29,062 research outputs found

    Laser-induced spin protection and switching in a specially designed magnetic dot: A theoretical investigation

    Full text link
    Most laser-induced femtosecond magnetism investigations are done in magnetic thin films. Nanostructured magnetic dots, with their reduced dimensionality, present new opportunities for spin manipulation. Here we predict that if a magnetic dot has a dipole-forbidden transition between the lowest occupied molecular orbital (LUMO) and the highest unoccupied molecular orbital (HOMO), but a dipole-allowed transition between LUMO+1 and HOMO, electromagnetically inducedtransparency can be used to prevent ultrafast laser-induced spin momentum reduction, or spin protection. This is realized through a strong dump pulse to funnel the population into LUMO+1. If the time delay between the pump and dump pulses is longer than 60 fs, a population inversion starts and spin switching is achieved. Thesepredictions are detectable experimentally.Comment: 6 pages, three figur

    Fermi surface and antiferromagnetism in the Kondo lattice: an asymptotically exact solution in d>1 Dimensions

    Full text link
    Interest in the heavy fermion metals has motivated us to examine the quantum phases and their Fermi surfaces within the Kondo lattice model. We demonstrate that the model is soluble asymptotically exactly in any dimension d>1, when the Kondo coupling is small compared with the RKKY interaction and in the presence of antiferromagnetic ordering. We show that the Kondo coupling is exactly marginal in the renormalization group sense, establishing the stability of an ordered phase with a small Fermi surface, AFs. Our results have implications for the global phase diagram of the heavy fermion metals, suggesting a Lifshitz transition inside the antiferromagnetic region and providing a new perspective for a Kondo-destroying antiferromagnetic quantum critical point.Comment: 4 pages, 4 figures; (v2) corrected typos and added reference/acknowledgment; (v3) version as published in Physical Review Letters (July, 2007

    Continuous-Time Monte Carlo study of the pseudogap Bose-Fermi Kondo model

    Full text link
    We study the pseudogap Bose-Fermi Anderson model with a continuous-time quantum Monte Carlo (CT-QMC) method. We discuss some delicate aspects of the transformation from this model to the Bose-Fermi Kondo model. We show that the CT-QMC method can be used at sufficiently low temperatures to access the quantum critical properties of these models.Comment: SCES 2010 Proceeding

    Effect of conduction electron interactions on Anderson impurities

    Full text link
    The effect of conduction electron interactions for an Anderson impurity is investigated in one dimension using a scaling approach. The flow diagrams are obtained by solving the renormalization group equations numerically. It is found that the Anderson impurity case is different from its counterpart -- the Kondo impurity case even in the local moment region. The Kondo temperature for an Anderson impurity shows nonmonotonous behavior, increasing for weak interactions but decreasing for strong interactions. The implication of the study to other related impurity models is also discussed.Comment: 10 pages, revtex, 4 figures (the postscript file is included), to appear in Phys. Rev. B (Rapid Commun.

    The ideal energy of classical lattice dynamics

    Full text link
    We define, as local quantities, the least energy and momentum allowed by quantum mechanics and special relativity for physical realizations of some classical lattice dynamics. These definitions depend on local rates of finite-state change. In two example dynamics, we see that these rates evolve like classical mechanical energy and momentum.Comment: 12 pages, 4 figures, includes revised portion of arXiv:0805.335

    Effect of growth conditions on optical properties of CdSe/ZnSe single quantum dots

    Full text link
    In this work, we have investigated the optical properties of two samples of CdSe quantum dots by using submicro-photoluminescence spectroscopy. The effect of vicinal-surface GaAs substrates on their properties has been also assessed. The thinner sample, grown on a substrate with vicinal surface, includes only dots with a diameter of less than 10 nm (type A islands). Islands of an average diameter of about 16 nm (type B islands) that are related to a phase transition via a Stranski-Krastanow growth process are also distributed in the thicker sample grown on an oriented substrate. We have studied the evolution of lineshapes of PL spectra for these two samples by improving spatial resolution that was achieved using nanoapertures or mesa structures. It was found that the use of a substrate with the vicinal surface leads to the suppression of excitonic PL emitted from a wetting layer.Comment: 2pages, 2 figures, Proceedings of International Conference On Superlattices Nano-Structures And Nano-Devices, July, Toulouse, France, to appear in the special issue of Physica

    Hall Effect in Nested Antiferromagnets Near the Quantum Critical Point

    Full text link
    We investigate the behavior of the Hall coefficient in the case of antiferromagnetism driven by Fermi surface nesting, and find that the Hall coefficient should abruptly increase with the onset of magnetism, as recently observed in vanadium doped chromium. This effect is due to the sudden removal of flat portions of the Fermi surface upon magnetic ordering. Within this picture, the Hall coefficient should scale as the square of the residual resistivity divided by the impurity concentration, which is consistent with available data.Comment: published version; an accidental interchange in the quoting of sigmaxyzsigma_{xyz} analytic dependencies was correcte

    One dimensional chain of quantum molecule motors as a mathematical physics model for muscle fibre

    Full text link
    A quantum chain model of many molecule motors is proposed as a mathematical physics theory on the microscopic modeling of classical force-velocity relation and tension transients of muscle fibre. We proposed quantum many-particle Hamiltonian to predict the force-velocity relation for the slow release of muscle fibre which has no empirical relation yet, it is much more complicate than hyperbolic relation. Using the same Hamiltonian, we predicted the mathematical force-velocity relation when the muscle is stimulated by alternative electric current. The discrepancy between input electric frequency and the muscle oscillation frequency has a physical understanding by Doppler effect in this quantum chain model. Further more, we apply quantum physics phenomena to explore the tension time course of cardiac muscle and insect flight muscle. Most of the experimental tension transients curves found their correspondence in the theoretical output of quantum two-level and three-level model. Mathematically modeling electric stimulus as photons exciting a quantum three-level particle reproduced most tension transient curves of water bug Lethocerus Maximus.Comment: 16 pages, 12 figures, Arguments are adde

    Global Phase Diagram of the Kondo Lattice: From Heavy Fermion Metals to Kondo Insulators

    Full text link
    We discuss the general theoretical arguments advanced earlier for the T=0 global phase diagram of antiferromagnetic Kondo lattice systems, distinguishing between the established and the conjectured. In addition to the well-known phase of a paramagnetic metal with a "large" Fermi surface (P_L), there is also an antiferromagnetic phase with a "small" Fermi surface (AF_S). We provide the details of the derivation of a quantum non-linear sigma-model (QNLsM) representation of the Kondo lattice Hamiltonian, which leads to an effective field theory containing both low-energy fermions in the vicinity of a Fermi surface and low-energy bosons near zero momentum. An asymptotically exact analysis of this effective field theory is made possible through the development of a renormalization group procedure for mixed fermion-boson systems. Considerations on how to connect the AF_S and P_L phases lead to a global phase diagram, which not only puts into perspective the theory of local quantum criticality for antiferromagnetic heavy fermion metals, but also provides the basis to understand the surprising recent experiments in chemically-doped as well as pressurized YbRh2Si2. We point out that the AF_S phase still occurs for the case of an equal number of spin-1/2 local moments and conduction electrons. This observation raises the prospect for a global phase diagram of heavy fermion systems in the Kondo-insulator regime. Finally, we discuss the connection between the Kondo breakdown physics discussed here for the Kondo lattice systems and the non-Fermi liquid behavior recently studied from a holographic perspective.Comment: (v3) leftover typos corrected. (v2) Published version. 32 pages, 4 figures. Section 7, on the connection between the Kondo lattice systems and the holographic models of non-Fermi liquid, is expanded. (v1) special issue of JLTP on quantum criticalit

    Needs Assessment of Barriers to Cervical Cancer Screening in Vietnamese American Health Care Providers

    Get PDF
    Vietnamese women living in the United States have a cervical cancer incidence rate that is five times that of White women. The low rate of cervical cancer screening among this high-risk population contributes to this disparity. In 2004, the National Cancer Institute collaborated with the Vietnamese American Medical Association to conduct a short needs assessment questionnaire (Pap Test Barriers Questionnaire for Health Care Providers) among its members to assess provider views about cervical cancer, barriers to Pap testing among Vietnamese women living in the United States, and types of patient education materials needed to help motivate Vietnamese women to receive a Pap test. Information from the questionnaire was used to inform development of a brochure and identify additional strategies to enhance outreach to Vietnamese women and providers. Almost all of the respondents (95%) thought that Pap tests were “very important” in the early detection of cervical cancer in Vietnamese women. In addition, knowledge about the importance of Pap tests was identified as the most influential factor for Vietnamese women not seeking a Pap test. Print materials that included both English and Vietnamese translations in the same publication were cited as a preferred communication tool. Further, health education through Vietnamese media was recommended as a primary strategy for reaching women with educational messages. Findings from this needs assessment contributes to a larger formative research effort to build NCI’s cervical cancer education program within its Office of Education and Special Initiatives
    • …
    corecore