65 research outputs found

    Meconium pseudocyst secondary to ileum volvulus perforation without peritoneal calcification: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>A case of giant meconium pseudocyst secondary to ileum volvulus perforation is presented. Conventional radiographic features of meconium peritonitis with secondary meconium pseudocyst formation are well described. Our case is unusual in comparison to other cases reported in the literature and needs to be reported because the meconium pseudocyst presented without the typical ultrasound features (calcifications, polyhydramnios and ascites) and was initially identified as an abdominal mass.</p> <p>Case presentation</p> <p>We describe the case of a 29-year-old Caucasian woman in her third trimester of pregnancy, in which an abdominal mass was detected in the fetus. The newborn was diagnosed in the early neonatal period with meconium pseudocyst secondary to ileum volvulus perforation.</p> <p>Conclusions</p> <p>The prenatal appearance of a meconium pseudocyst can be complemented by other signs of bowel obstruction (if present) such as polyhydramnios and fetal bowel dilatation. This is an original case report of interest to all clinicians in the perinatology and fetal ultrasound field. We consider that the utility of this case is the recognition that a meconium pseudocyst might appear without the typical ultrasound features and should be considered as a differential diagnosis when an echogenic intra-abdominal cyst is seen.</p

    Identification and Validation of Novel Cerebrospinal Fluid Biomarkers for Staging Early Alzheimer's Disease

    Get PDF
    Ideally, disease modifying therapies for Alzheimer disease (AD) will be applied during the 'preclinical' stage (pathology present with cognition intact) before severe neuronal damage occurs, or upon recognizing very mild cognitive impairment. Developing and judiciously administering such therapies will require biomarker panels to identify early AD pathology, classify disease stage, monitor pathological progression, and predict cognitive decline. To discover such biomarkers, we measured AD-associated changes in the cerebrospinal fluid (CSF) proteome.CSF samples from individuals with mild AD (Clinical Dementia Rating [CDR] 1) (n = 24) and cognitively normal controls (CDR 0) (n = 24) were subjected to two-dimensional difference-in-gel electrophoresis. Within 119 differentially-abundant gel features, mass spectrometry (LC-MS/MS) identified 47 proteins. For validation, eleven proteins were re-evaluated by enzyme-linked immunosorbent assays (ELISA). Six of these assays (NrCAM, YKL-40, chromogranin A, carnosinase I, transthyretin, cystatin C) distinguished CDR 1 and CDR 0 groups and were subsequently applied (with tau, p-tau181 and Aβ42 ELISAs) to a larger independent cohort (n = 292) that included individuals with very mild dementia (CDR 0.5). Receiver-operating characteristic curve analyses using stepwise logistic regression yielded optimal biomarker combinations to distinguish CDR 0 from CDR>0 (tau, YKL-40, NrCAM) and CDR 1 from CDR<1 (tau, chromogranin A, carnosinase I) with areas under the curve of 0.90 (0.85-0.94 95% confidence interval [CI]) and 0.88 (0.81-0.94 CI), respectively.Four novel CSF biomarkers for AD (NrCAM, YKL-40, chromogranin A, carnosinase I) can improve the diagnostic accuracy of Aβ42 and tau. Together, these six markers describe six clinicopathological stages from cognitive normalcy to mild dementia, including stages defined by increased risk of cognitive decline. Such a panel might improve clinical trial efficiency by guiding subject enrollment and monitoring disease progression. Further studies will be required to validate this panel and evaluate its potential for distinguishing AD from other dementing conditions

    Computational identification of reassortments in avian influenza viruses

    No full text
    The avian influenza virus (AIV) has eight genomic segments (hemagglutinin [HA], neuraminidase [NA], RNA polymerase subunit A [PA], RNA polymerase subunit B1 [PB1], RNA polymerase subunit B2 [PB2], nucleoprotein [NP], nonstructural gene [NS], and matrix protein [M]). The genetic reassortments, recombinations, and mutations lead to a rapid emergence of novel genotypes of the AIVs during their evolution. These emerging viruses provide a large reservoir for pandemic strains. Here we describe a novel computational strategy for genetic reassortment identification. In contrast to the traditional phylogenetic approaches, our method views the genotypes through the modules in networks. Genetic segments with short phylogenetic distance are grouped into modules. Our method is not limited to the number of sequences. We applied this method in reassortment identification of NP segments in H5N1 AIVs. We identified two new potential reassortments for H5N, AIVs beyond the reported genotypes in literature.link_to_subscribed_fulltex
    corecore