61 research outputs found

    Investigation and development of titanium nitride solid-state potentiometric pH sensor

    Get PDF
    The measurement of pH value is crucial parameter in various fields like, drinking water monitoring, food preparation, biomedical and environmental applications. The most common device for pH sensing is the conventional pH glass electrode. While glass electrodes have several advantages, such as Nernstian sensitivity, superior ion selectivity, excellent stability, and extensive operating range, they have several key disadvantages. pH glass electrodes need to be stored in buffer solutions, they are fragile and have limited size and shape, making them impractical for some applications, such as being potentially used as miniature pH sensors for capsule endoscopy and ambulatory esophageal pH monitoring. To address these issues of limitations of glass electrodes, various metal oxides have been investigated and proposed as potential electrode materials for the development of pH sensors. Solid metal sensors offer unique features such as insolubility, stability, mechanical strength, and possibility of miniaturization. However, the main drawback of the metal oxide pH sensors is the interference caused by oxidizing and reducing agents present in some sample solutions. To reduce the redox interference, metal nitride solid sensors were investigated in this project with the potential for the development of high-sensitivity pH sensing electrodes. Metal nitrides are refractory, have high melting points and interstitial defects, and, at room temperature, they are chemically stable and resist hydrolysis caused by weak acids. There are many reports on different metal nitrides electrodes in literature, of which several have been previously investigated for use as pH sensors. Here, specifically, thin films of titanium nitride (TiN) were manufactured using radio frequency magnetron sputtering. The effect of sputtering parameters (e.g., thickness, sputter power, gas composition) were investigated to optimize the materials for use as pH sensor. Additionally, the underlining mechanism governing the pH sensitivity of these metal nitrides was investigated by examining the pH sensing properties (i.e., sensitivity, hysteresis, and drift) and the effect of redox agents. The successfully optimized material was then used to construct and demonstrate the concept of a solid-state pH sensor using an appropriate reference electrode. The solid-state TiN sensor paves the way for future development of a miniaturised pH sensor capsule for biomedical applications or lab-on-a-chip pH sensor for environmental and industrial applications. Expending the realms of pH monitoring, currently limited by the glass pH electrode

    Fabrication and optimization of nafion as a protective membrane for TiN-based pH sensors

    Get PDF
    In this study, a solid-state modified pH sensor with RF magnetron sputtering technology was developed. The sensor consists of an active electrode consisting of a titanium nitride (TiN) film with a protective membrane of Nafion and a reference glass electrode of Ag/AgCl. The sensitivity of the pH sensor was investigated. Results show a sensor with excellent characteristics: sensitivity of 58.6 mV/pH for pH values from 2 to 12, very short response time of approximately 12 s in neutral pH solutions, and stability of less than 0.9 mV in 10 min duration. Further improvement in the performance of the TiN sensor was studied by application of a Nafion protective membrane. Nafion improves the sensor sensitivity close to Nernstian by maintaining a linear response. This paves the way to implement TiN with Nafion protection to block any interference species during real time applications in biosensing and medical diagnostic pH sensors

    Titanium nitride thin film based low‐redox‐interference potentiometric pH sensing electrodes

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. In this work, a solid‐state potentiometric pH sensor is designed by incorporating a thin film of Radio Frequency Magnetron Sputtered (RFMS) Titanium Nitride (TiN) working electrode and a commercial Ag|AgCl|KCl double junction reference electrode. The sensor shows a linear pH slope of −59.1 mV/pH, R2 = 0.9997, a hysteresis as low as 1.2 mV, and drift below 3.9 mV/hr. In addition, the redox interference performance of TiN electrodes is compared with that of Iridium Oxide (IrO2) counterparts. Experimental results show −32mV potential shift (E0 value) in 1 mM ascorbic acid (reducing agent) for TiN electrodes, and this is significantly lower than the −114 mV potential shift of IrO2 electrodes with sub‐Nernstian sensitivity. These results are most encouraging and pave the way towards the development of miniaturized, cost‐effective, and robust pH sensors for difficult matrices, such as wine and fresh orange juice
    • 

    corecore