2,431 research outputs found

    Testing the predictive validity of the healthy eating index-2015 in the multiethnic cohort: Is the score associated with a reduced risk of all-cause and cause-specific mortality?

    Get PDF
    The Healthy Eating Index-2015 (HEI-2015) was created to assess conformance of dietary intake with the Dietary Guidelines for Americans (DGA) 2015–2020. We assessed the association between the HEI-2015 and mortality from all-cause, cardiovascular disease (CVD), and cancer in the Multiethnic Cohort (MEC). White, African American, Native Hawaiian, Japanese American, and Latino adults (n > 215,000) from Hawaii and California completed a quantitative food-frequency questionnaire at study enrollment. HEI-2015 scores were divided into quintiles for men and women. Radar graphs were used to demonstrate how dietary components contributed to HEI-2015 scores. Mortality was documented over 17–22 years of follow-up. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using Cox proportional hazards models. High HEI-2015 scores were inversely associated with risk of mortality from all-cause, CVD, and cancer for men and women (p-trend <0.0001 for all models). For men, the HRs (CIs) for all-cause, CVD, and cancer comparing the highest to the lowest quintile were 0.79 (0.76, 0.82), 0.76 (0.71, 0.82), and 0.80 (0.75, 0.87), respectively. For women, the HRs were 0.79 (0.76, 0.82), 0.75 (0.70, 0.81), and 0.84 (0.78, 0.91), respectively. These results, in a multiethnic population, demonstrate that following a diet aligned with the DGAs 2015–2020 recommendations is associated with lower risk of mortality from all-cause, CVD, and cancer

    Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model

    Full text link
    The present paper proposes a novel interpretation of the widely scattered states (called synchronized traffic) stimulated by Kerner's hypotheses about the existence of a multitude of metastable states in the fundamental diagram. Using single vehicle data collected at the German highway A1, temporal velocity patterns have been analyzed to show a collection of certain fragments with approximately constant velocities and sharp jumps between them. The particular velocity values in these fragments vary in a wide range. In contrast, the flow rate is more or less constant because its fluctuations are mainly due to the discreteness of traffic flow. Subsequently, we develop a model for synchronized traffic that can explain these characteristics. Following previous work (I.A.Lubashevsky, R.Mahnke, Phys. Rev. E v. 62, p. 6082, 2000) the vehicle flow is specified by car density, mean velocity, and additional order parameters hh and aa that are due to the many-particle effects of the vehicle interaction. The parameter hh describes the multilane correlations in the vehicle motion. Together with the car density it determines directly the mean velocity. The parameter aa, in contrast, controls the evolution of hh only. The model assumes that aa fluctuates randomly around the value corresponding to the car configuration optimal for lane changing. When it deviates from this value the lane change is depressed for all cars forming a local cluster. Since exactly the overtaking manoeuvres of these cars cause the order parameter aa to vary, the evolution of the car arrangement becomes frozen for a certain time. In other words, the evolution equations form certain dynamical traps responsible for the long-time correlations in the synchronized mode.Comment: 16 pages, 10 figures, RevTeX

    Transmission of Human Papillomavirus in Heterosexual Couples

    Get PDF
    Rate of transmission from penis to cervix was lower than that from cervix to penis; 13 different genotypes were sexually transmitted

    Two-way multi-lane traffic model for pedestrians in corridors

    Get PDF
    We extend the Aw-Rascle macroscopic model of car traffic into a two-way multi-lane model of pedestrian traffic. Within this model, we propose a technique for the handling of the congestion constraint, i.e. the fact that the pedestrian density cannot exceed a maximal density corresponding to contact between pedestrians. In a first step, we propose a singularly perturbed pressure relation which models the fact that the pedestrian velocity is considerably reduced, if not blocked, at congestion. In a second step, we carry over the singular limit into the model and show that abrupt transitions between compressible flow (in the uncongested regions) to incompressible flow (in congested regions) occur. We also investigate the hyperbolicity of the two-way models and show that they can lose their hyperbolicity in some cases. We study a diffusive correction of these models and discuss the characteristic time and length scales of the instability

    Macroscopic Dynamics of Multi-Lane Traffic

    Full text link
    We present a macroscopic model of mixed multi-lane freeway traffic that can be easily calibrated to empirical traffic data, as is shown for Dutch highway data. The model is derived from a gas-kinetic level of description, including effects of vehicular space requirements and velocity correlations between successive vehicles. We also give a derivation of the lane-changing rates. The resulting dynamic velocity equations contain non-local and anisotropic interaction terms which allow a robust and efficient numerical simulation of multi-lane traffic. As demonstrated by various examples, this facilitates the investigation of synchronization patterns among lanes and effects of on-ramps, off-ramps, lane closures, or accidents.Comment: For related work see http://www.theo2.physik.uni-stuttgart.de/helbing.htm

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore