13 research outputs found

    Calcium channel blocker and risk of postoperation lymphatic-related complications among gynecologic malignances

    Get PDF
    PurposeThis study was performed to assess the association of calcium channel blockers (CCB) and other potential factors with postoperative lymphatic-related morbidity in patients with cervical cancer and endometrial carcinoma.MethodsPatients diagnosed with cervical cancer or endometrial carcinoma with pelvic lymphadenectomy between January 2017 and January 2022 were enrolled. Postoperative lymphatic-related morbidity was evaluated by calculating the lymph cyst occurrence within 3 months after surgery and the duration of pelvic drainage. Univariate analyses evaluating the risk factors for lymphatic-related morbidity were performed.ResultsOf a total of 251 patients, 52 patients were diagnosed with lymphatic cysts by B-ultrasound or computed tomography, and the duration of drainage from 110 patients exceeded the average number of days. Univariable analysis revealed that hypertension, CCB, and lymph node metastasis were independent predictors of postoperative complications.ConclusionsThis study demonstrated that CCB may be a factor associated with the incidence of postoperation lymph cysts, and CCB usage prolongs the duration of pelvic drainage

    Transcriptomic and physiological analysis of atractylodes chinensis in response to drought stress reveals the putative genes related to sesquiterpenoid biosynthesis

    No full text
    Abstract Background Atractylodes chinensis (DC) Koidz., a dicotyledonous and hypogeal germination species, is an important medicinal plant because its rhizome is enriched in sesquiterpenes. The development and production of A. chinensis are negatively affected by drought stress, especially at the seedling stage. Understanding the molecular mechanism of A. chinensis drought stress response plays an important role in ensuring medicinal plant production and quality. In this study, A. chinensis seedlings were subjected to drought stress treatment for 0 (control), 3 (D3), and 9 days (D9). For the control, the sample was watered every two days and collected on the second morning after watering. The integration of physiological and transcriptomic analyses was carried out to investigate the effects of drought stress on A. chinensis seedlings and to reveal the molecular mechanism of its drought stress response. Results The malondialdehyde, proline, soluble sugar, and crude protein contents and antioxidative enzyme (superoxide dismutase, peroxidase, and catalase) activity were significantly increased under drought stress compared with the control. Transcriptomic analysis indicated a total of 215,665 unigenes with an average length of 759.09 bp and an N50 of 1140 bp. A total of 29,449 differentially expressed genes (DEGs) were detected between the control and D3, and 14,538 DEGs were detected between the control and D9. Under drought stress, terpenoid backbone biosynthesis had the highest number of unigenes in the metabolism of terpenoids and polyketides. To identify candidate genes involved in the sesquiterpenoid and triterpenoid biosynthetic pathways, we observed 22 unigene-encoding enzymes in the terpenoid backbone biosynthetic pathway and 15 unigene-encoding enzymes in the sesquiterpenoid and triterpenoid biosynthetic pathways under drought stress. Conclusion Our study provides transcriptome profiles and candidate genes involved in sesquiterpenoid and triterpenoid biosynthesis in A. chinensis in response to drought stress. Our results improve our understanding of how drought stress might affect sesquiterpenoid and triterpenoid biosynthetic pathways in A. chinensis

    Discovery of Phenolic Glycoside from Hyssopus cuspidatus Attenuates LPS-Induced Inflammatory Responses by Inhibition of iNOS and COX-2 Expression through Suppression of NF-κB Activation

    No full text
    It seems quite necessary to obtain effective substances from natural products against inflammatory response (IR) as there are presently clinical problems regarding accompanying side effects and lowered quality of life. This work aimed to investigate the abilities of hyssopuside (HY), a novel phenolic glycoside isolated from Hyssopus cuspidatus (H. cuspidatus), against IR in lipopolysaccharide (LPS)-induced RAW 264.7 cells and mouse peritoneal macrophages. The results indicated that HY could reduce nitric oxide (NO) production and inhibit the production and secretion of pro-inflammatory mediators including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) in LPS-stimulated macrophages. Moreover, data from the immunofluorescence study showed that HY suppressed nuclear translocation of nuclear factor-kappa B (NF-κB) upon LPS induction. The Western blot results suggested that HY reversed the LPS-induced degradation of IκB (inhibitor of NF-κB), which is normally required for the activation of NF-κB. Meanwhile, the overexpression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) diminished significantly with the presence of HY in response to LPS stimulation. On the other hand, HY had a negligible impact on the activation of mitogen-activated protein kinase (MAPK) pathways. Moreover, an in silico study of HY against four essential proteins/enzymes revealed that COX-2 was the most efficient enzyme for the interaction, and binding of residues Phe179, Asn351, and Ser424 with HY played crucial roles in the observed activity. The structure analysis indicated the typical characterizations with phenylethanoid glycoside contributed to the anti-inflammatory effects of HY. These results indicated that HY manipulated its anti-inflammatory effects mainly through blocking the NF-κB signal transduction pathways. Collectively, we believe that HY could be a potential alternative phenolic agent for alleviating excessive inflammation in many inflammation-associated diseases

    Alteration in Gut Microbiota Associated with Zinc Deficiency in School-Age Children

    No full text
    Zinc deficiency could lead to a dynamic variation in gut microbial composition and function in animals. However, how zinc deficiency affects the gut microbiome in school-age children remains unclear. The purpose of this study was to profile the dynamic shifts in the gut microbiome of school-age children with zinc deficiency, and to determine whether such shifts are associated with dietary intake. A dietary survey, anthropometric measurements, and serum tests were performed on 177 school-age children, and 67 children were selected to explore the gut microbial community using amplicon sequencing. School-age children suffered from poor dietary diversity and insufficient food and nutrient intake, and 32% of them were zinc deficient. The inflammatory cytokines significantly increased in the zinc deficiency (ZD) group compared to that in the control (CK) group (p < 0.05). There was no difference in beta diversity, while the Shannon index was much higher in the ZD group (p < 0.05). At the genus level, Coprobacter, Acetivibrio, Paraprevotella, and Clostridium_XI were more abundant in the ZD group (p < 0.05). A functional predictive analysis showed that the metabolism of xenobiotics by cytochrome P450 was significantly depleted in the ZD group (p < 0.05). In conclusion, gut microbial diversity was affected by zinc deficiency with some specific bacteria highlighted in the ZD group, which may be used as biomarkers for further clinical diagnosis of zinc deficiency

    The Rensselaer Mandarin Project — A Cognitive and Immersive Language Learning Environment

    No full text
    The Rensselaer Mandarin Project enables a group of foreign language students to improve functional understanding, pronunciation and vocabulary in Mandarin Chinese through authentic speaking situations in a virtual visit to China. Students use speech, gestures, and combinations thereof to navigate an immersive, mixed reality, stylized realism game experience through interaction with AI agents, immersive technologies, and game mechanics. The environment was developed in a black box theater equipped with a human-scale 360◦ panoramic screen (140h, 200r), arrays of markerless motion tracking sensors, and speakers for spatial audio

    Boosting cartilage repair with silk fibroin-DNA hydrogel-based cartilage organoid precursor

    No full text
    Osteoarthritis (OA), a common degenerative disease, is characterized by high disability and imposes substantial economic impacts on individuals and society. Current clinical treatments remain inadequate for effectively managing OA. Organoids, miniature 3D tissue structures from directed differentiation of stem or progenitor cells, mimic native organ structures and functions. They are useful for drug testing and serve as active grafts for organ repair. However, organoid construction requires extracellular matrix-like 3D scaffolds for cellular growth. Hydrogel microspheres, with tunable physical and chemical properties, show promise in cartilage tissue engineering by replicating the natural microenvironment. Building on prior work on SF-DNA dual-network hydrogels for cartilage regeneration, we developed a novel RGD-SF-DNA hydrogel microsphere (RSD-MS) via a microfluidic system by integrating photopolymerization with self-assembly techniques and then modified with Pep-RGDfKA. The RSD-MSs exhibited uniform size, porous surface, and optimal swelling and degradation properties. In vitro studies demonstrated that RSD-MSs enhanced bone marrow mesenchymal stem cells (BMSCs) proliferation, adhesion, and chondrogenic differentiation. Transcriptomic analysis showed RSD-MSs induced chondrogenesis mainly through integrin-mediated adhesion pathways and glycosaminoglycan biosynthesis. Moreover, in vivo studies showed that seeding BMSCs onto RSD-MSs to create cartilage organoid precursors (COPs) significantly enhanced cartilage regeneration. In conclusion, RSD-MS was an ideal candidate for the construction and long-term cultivation of cartilage organoids, offering an innovative strategy and material choice for cartilage regeneration and tissue engineering
    corecore