255 research outputs found

    Development of Visual Philosophy under Impact of Philosophy of Technology

    Get PDF
    Throughout history the development of technology has been affecting people’s lives. Any kind of technological innovation may give a qualitative leap in human society. The impact of technology has penetrated into the study of various disciplines. Philosophy is no exception. In 1877, Karp formally proposed the concept of“philosophy of technology.” Technology has been studied from the practical aspect of a tool to the level of philosophy. Although the concept of visual philosophy has not yet been formally proposed, the thinking of philosophical vision has already existed. This paper is to analyze the impact of philosophy of technology on the development of visual philosophy, from the perspective of instrumental theory and humanistic theory, and to clarify current values and directions of visual philosophy

    A Survey of Blockchain Applications in Different Domains

    Full text link
    Blockchains have received much attention recently since they provide decentralized approaches to the creation and management of value. Many banks, Internet companies, car manufacturers, and even governments worldwide have incorporated or started considering blockchains to improve the security, scalability, and efficiency of their services. In this paper, we survey blockchain applications in different areas. These areas include cryptocurrency, healthcare, advertising, insurance, copyright protection, energy, and societal applications. Our work provides a timely summary for individuals and organizations interested in blockchains. We envision our study to motivate more blockchain applications.Comment: Published in Proceedings of the 2018 International Conference on Blockchain Technology and Application (ICBTA

    Synthesis and Thermoelectric Properties of C 60

    Get PDF
    Nanosized C60 powder was sufficiently incorporated with Cu2GeSe3 powder by ball milling and C60/Cu2GeSe3 composites were prepared by spark plasma sintering. C60 distributed uniformly in the form of clusters and the average size of cluster was lower than 1 μm. With the addition of C60 increasing, the electrical resistivity and Seebeck coefficient of C60/Cu2GeSe3 composites increased while the thermal conductivity decreased significantly which resulted from the phonon scattering by C60 clusters locating on the grain boundaries of Cu2GeSe3 matrix. The maximum ZT of 0.20 was achieved at 700 K for 0.9% C60/Cu2GeSe3 sample

    Anticancer drug synergy prediction in understudied tissues using transfer learning

    Get PDF
    ocaa212Objective: Drug combination screening has advantages in identifying cancer treatment options with higher efficacy without degradation in terms of safety. A key challenge is that the accumulated number of observations in in-vitro drug responses varies greatly among different cancer types, where some tissues are more understudied than the others. Thus, we aim to develop a drug synergy prediction model for understudied tissues as a way of overcoming data scarcity problems. Materials and Methods: We collected a comprehensive set of genetic, molecular, phenotypic features for cancer cell lines. We developed a drug synergy prediction model based on multitask deep neural networks to integrate multimodal input and multiple output. We also utilized transfer learning from data-rich tissues to data-poor tissues. Results: We showed improved accuracy in predicting synergy in both data-rich tissues and understudied tissues. In data-rich tissue, the prediction model accuracy was 0.9577 AUROC for binarized classification task and 174.3 mean squared error for regression task. We observed that an adequate transfer learning strategy significantly increases accuracy in the understudied tissues. Conclusions: Our synergy prediction model can be used to rank synergistic drug combinations in understudied tissues and thus help to prioritize future in-vitro experiments. Code is available at https://github.com/yejinjkim/synergy-transfer.Peer reviewe

    Preparation and evaluation of ofloxacin-loaded palmitic acid solid lipid nanoparticles

    Get PDF
    The purpose of this study was to use solid lipid nanoparticles (SLN) to improve the pharmacological activity of ofloxacin. Ofloxacin-loaded SLN were prepared using palmitic acid as lipid matrix and poly vinyl alcohol (PVA) as emulsifier by a hot homogenization and ultrasonication method. The physicochemical characteristics of SLN were investigated by optical microscope, scanning electron microscopy, and photon correlation spectroscopy. Pharmacokinetics was studied after oral administration in mice. In vitro antibacterial activity and in vivo antibacterial efficacy of the SLN were investigated using minimal inhibitory concentrations (MIC) and a mouse protection model. The results demonstrated that the encapsulation efficiency, loading capacity, diameter, polydispersivity index, and zeta potential of the nanoparticles were 41.36% ± 1.50%, 4.40% ± 0.16%, 156.33 ± 7.51 nm, 0.26 ± 0.04, and −22.70 ± 1.40 mv, respectively. The SLN showed sustained release and enhanced antibacterial activity in vitro. Pharmacokinetic results demonstrated that SLN increased the bioavailability of ofloxacin by 2.27-fold, and extended the mean residence time of the drug from 10.50 to 43.44 hours. Single oral administrations of ofloxacin-loaded nanoparticles at 3 drug doses, 5 mg/kg, 10 mg/kg, and 20 mg/kg, all produced higher survival rates of lethal infected mice compared with native ofloxacin. These results indicate that SLN might be a promising delivery system to enhance the pharmacological activity of ofloxacin

    Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study

    Get PDF
    In recent decades, the Chinese government has made a great effort in initiating large-scale ecological restoration programs (ERPs) to reduce the dust concentrations in China, especially for dust storm episodes. Using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product, the ERP-induced land cover changes are quantitatively evaluated in this study. Two obvious vegetation protective barriers arise throughout China from the southwest to the northeast, which are well known as the "Green Great Wall" (GGW). Both the grass GGW and forest GGW are located between the dust source region (DSR) and the densely populated North China Plain (NCP). To assess the effect of ERPs on dust concentrations, a regional transport/dust model (WRF-DUST, Weather Research and Forecast model with dust) is applied to investigate the evolution of dust plumes during a strong dust storm episode from 2 to 8 March 2016. The WRF-DUST model generally performs reasonably well in reproducing the temporal variations and spatial distributions of near-surface [PMC] (mass concentration of particulate matter with aerodynamic diameter between 2.5 and 10 mu m) during the dust storm event. Sensitivity experiments have indicated that the ERP-induced GGWs help to reduce the dust concentration in the NCP, especially in BTH (Beijing, Tianjin, and Hebei). When the dust storm is transported from the upwind DSR to the downwind NCP, the [PMC] reduction ranges from -5 to -15% in the NCP, with a maximum reduction of -12.4% (-19.2 mu gm(3)) in BTH and -7.6% (-10.1 mu g m(3)) in the NCP. We find the dust plumes move up to the upper atmosphere and are transported from the upwind DSR to the downwind NCP, accompanied by dust decrease. During the episode, the forest GGW is nonsignificant in dust concentration control because it is of benefit for dry deposition and not for emission. Conversely, the grass GGW is beneficial in controlling dust erosion and is the dominant reason for [PMC] decrease in the NCP. Because the air pollution is severe in eastern China, especially in the NCP, and the contribution of dust episodes is significant, the reduction of dust concentrations will have important effects on severe air pollution. This study illustrates the considerable contribution of ERPs to the control of air pollution in China, especially in springtime

    Acute toxicity study of tilmicosin-loaded hydrogenated castor oil-solid lipid nanoparticles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our previous studies demonstrated that tilmicosin-loaded hydrogenated castor oil solid lipid nanoparticles (Til-HCO-SLN) are a promising formulation for enhanced pharmacological activity and therapeutic efficacy in veterinary use. The purpose of this work was to evaluate the acute toxicity of Til-HCO-SLN.</p> <p>Methods</p> <p>Two nanoparticle doses were used for the study in ICR mice. The low dose (766 mg/kg.bw) with tilmicosin 7.5 times of the clinic dosage and below the median lethal dose (LD<sub>50</sub>) was subcutaneously administered twice on the first and 7th day. The single high dose (5 g/kg.bw) was the practical upper limit in an acute toxicity study and was administered subcutaneously on the first day. Blank HCO-SLN, native tilmicosin, and saline solution were included as controls. After medication, animals were monitored over 14 days, and then necropsied. Signs of toxicity were evaluated via mortality, symptoms of treatment effect, gross and microscopic pathology, and hematologic and biochemical parameters.</p> <p>Results</p> <p>After administration of native tilmicosin, all mice died within 2 h in the high dose group, in the low dose group 3 died after the first and 2 died after the second injections. The surviving mice in the tilmicosin low dose group showed hypoactivity, accelerated breath, gloomy spirit and lethargy. In contrast, all mice in Til-HCO-SLN and blank HCO-SLN groups survived at both low and high doses. The high nanoparticle dose induced transient clinical symptoms of treatment effect such as transient reversible action retardation, anorexy and gloomy spirit, increased spleen and liver coefficients and decreased heart coefficients, microscopic pathological changes of liver, spleen and heart, and minor changes in hematologic and biochemical parameters, but no adverse effects were observed in the nanoparticle low dose group.</p> <p>Conclusions</p> <p>The results revealed that the LD<sub>50 </sub>of Til-HCO-SLN and blank HCO-SLN exceeded 5 g/kg.bw and thus the nanoparticles are considered low toxic according to the toxicity categories of chemicals. Moreover, HCO-SLN significantly decreased the toxicity of tilmicosin. Normal clinic dosage of Til-HCO-SLN is safe as evaluated by acute toxicity.</p
    corecore