217 research outputs found

    Direct medical cost of type 2 diabetes in Singapore

    Get PDF
    10.1371/joumal.pone.0122795PLoS ONE103e012279

    Alternating minimization algorithms for graph regularized tensor completion

    Full text link
    We consider a low-rank tensor completion (LRTC) problem which aims to recover a tensor from incomplete observations. LRTC plays an important role in many applications such as signal processing, computer vision, machine learning, and neuroscience. A widely used approach is to combine the tensor completion data fitting term with a regularizer based on a convex relaxation of the multilinear ranks of the tensor. For the data fitting function, we model the tensor variable by using the Canonical Polyadic (CP) decomposition and for the low-rank promoting regularization function, we consider a graph Laplacian-based function which exploits correlations between the rows of the matrix unfoldings. For solving our LRTC model, we propose an efficient alternating minimization algorithm. Furthermore, based on the Kurdyka-{\L}ojasiewicz property, we show that the sequence generated by the proposed algorithm globally converges to a critical point of the objective function. Besides, an alternating direction method of multipliers algorithm is also developed for the LRTC model. Extensive numerical experiments on synthetic and real data indicate that the proposed algorithms are effective and efficient

    Comparison of multi-field coupling numerical simulation in hot dry rock thermal exploitation of enhanced geothermal systems

    Get PDF
     In order to alleviate the environmental crisis and improve energy structure, countries from all over the world have focused on the hot dry rock geothermal resources with great potential and with little pollution. The geothermal heat production from Enhanced Geothermal System (EGS) comes with complex multi-field coupling process, and it is of great significance to study the temporal and spatial evolution of geothermal reservoir. In this work, a practical numerical model is established to simulate the heat production process in EGS, and the comparison of thermal-hydraulic (TH), thermal-hydraulic-mechanical (THM) and thermal-hydraulic-mechanical-chemical (THMC) coupling in geothermal reservoir is analyzed. The results show that the stable production stage of the three cases is approximately 5 years; however, compared with TH and THMC coupling, the service-life for THM coupling decreased by 1140 days and 332 days, respectively. The mechanical enhanced effects are offset by the chemical precipitation, and the precipitation from SiO2 is much larger than the dissolution of calcite.Cited as: Chen, S., Ding, B., Gong, L., Huang, Z., Yu, B., Sun, S. Comparison of multi-field coupling numerical simulation in hot dry rock thermal exploitation of enhanced geothermal systems. Advances in Geo-Energy Research, 2019, 3(4): 396-409, doi: 10.26804/ager.2019.04.0
    corecore