23 research outputs found

    Taurine chloramine protects RAW 264.7 macrophages against hydrogen peroxide-induced apoptosis by increasing antioxidants

    Get PDF
    Taurine chloramine is the major chloramine generated in activated neutrophils via the reaction between the overproduced hypochlorous acid and the stored taurine. Taurine chloramine has anti-inflammatory and cytoprotective effects in inflamed tissues by inhibiting the production of inflammatory mediators. Taurine chloramine increases heme oxygenase activity and also protects against hydrogen peroxide (H2O2)-derived necrosis in macrophages. In this study, we examined further whether taurine chloramine could protect RAW 264.7 macrophages from apoptosis caused by H2O2. Macrophages treated with 0.4 mM H2O2 underwent apoptosis without showing immediate signs of necrosis, and the cells pretreated with taurine chloramine were protected from the H2O2-derived apoptosis. Taurine chloramine increased heme oxygenase-1 expression and heme oxygenase activity. The taurine chloramine-derived upregulation of heme oxygenase-1 expression was blocked by inhibition of ERK phosphorylation. Taurine chloramine decreased cellular glutathione (GSH) levels initially, but the GSH level increased above the control level by 10 h. Taurine chloramine also increased catalase expression and protected macrophages from the apoptotic effect of H2O2. Combined, these results indicate that the taurine chloramine, produced and released endogenously by the activated neutrophils, can protect the macrophages in inflamed tissues from the H2O2-derived apoptosis not only by increasing the expression of cytoprotective enzymes like heme oxygenase-1 and catalase, but also by increasing the intracellular antioxidant GSH level

    UPLC-QTOF/MS-Based Lipidomic Profiling of Liver Qi-Stagnation and Spleen-Deficiency Syndrome in Patients with Hyperlipidemia

    No full text
    Hyperlipidemia is a common disease caused by abnormal plasma lipid metabolism. Lipidomics is a powerful and efficient technology to study the integration of disease and syndrome of Chinese medicine. This study investigated specific changes in lipid metabolites from hyperlipidemia patients with syndrome of liver qi-stagnation and spleen-deficiency (SLQSD). Lipid profiles in plasma samples from 29 hyperlipidemia patients including 10 SLQSD and 19 non-SLQSD and 26 healthy volunteers (NC) were tested by UPLC-QTOF/MS. PLS-DA analysis and database searching were performed to discover differentiating metabolites. Differences in lipid metabolites between hyperlipidemia and healthy people mainly include phosphatidylcholines, phosphatidylethanolamines, phosphatidylglycerols, and ceramides. Hyperlipidemia patients with SLQSD and non-SLQSD could be differentiated by using identified lipid metabolites including phosphatidylcholines, phosphatidylethanolamines, phosphatidylinositols, triglycerides, diacylglycerols, lysophosphatidylethanolamines, sphingomyelins, lysophosphatidylcholines, and lactosylceramides. There were significant differences of lipid metabolism between between different syndromes of the same disease such as hyperlipidemia which showed significant differences between SLQSD and non-SLQSD

    SIRT1 Activation Attenuates the Cardiac Dysfunction Induced by Endothelial Cell-Specific Deletion of CRIF1

    No full text
    The CR6-interacting factor1 (CRIF1) mitochondrial protein is indispensable for peptide synthesis and oxidative phosphorylation. Cardiomyocyte-specific deletion of CRIF1 showed impaired mitochondrial function and cardiomyopathy. We developed an endothelial cell-specific CRIF1 deletion mouse to ascertain whether dysfunctional endothelial CRIF1 influences cardiac function and is mediated by the antioxidant protein sirtuin 1 (SIRT1). We also examined the effect of the potent SIRT1 activator SRT1720 on cardiac dysfunction. Mice with endothelial cell-specific CRIF1 deletion showed an increased heart-to-body weight ratio, increased lethality, and markedly reduced fractional shortening of the left ventricle, resulting in severe cardiac dysfunction. Moreover, endothelial cell-specific CRIF1 deletion resulted in mitochondrial dysfunction, reduced ATP levels, inflammation, and excessive oxidative stress in heart tissues, associated with decreased SIRT1 expression. Intraperitoneal injection of SRT1720 ameliorated cardiac dysfunction by activating endothelial nitric oxide synthase, reducing oxidative stress, and inhibiting inflammation. Furthermore, the decreased endothelial junction-associated protein zonula occludens-1 in CRIF1-deleted mice was significantly recovered after SRT1720 treatment. Our results suggest that endothelial CRIF1 plays an important role in maintaining cardiac function, and that SIRT1 induction could be a therapeutic strategy for endothelial dysfunction-induced cardiac dysfunction

    CRIF1 siRNA-Encapsulated PLGA Nanoparticles Suppress Tumor Growth in MCF-7 Human Breast Cancer Cells

    No full text
    Mitochondrial oxidative phosphorylation (OXPHOS) system dysfunction in cancer cells has been exploited as a target for anti-cancer therapeutic intervention. The downregulation of CR6-interacting factor 1 (CRIF1), an essential mito-ribosomal factor, can impair mitochondrial function in various cell types. In this study, we investigated whether CRIF1 deficiency induced by siRNA and siRNA nanoparticles could suppress MCF-7 breast cancer growth and tumor development, respectively. Our results showed that CRIF1 silencing decreased the assembly of mitochondrial OXPHOS complexes I and II, which induced mitochondrial dysfunction, mitochondrial reactive oxygen species (ROS) production, mitochondrial membrane potential depolarization, and excessive mitochondrial fission. CRIF1 inhibition reduced p53-induced glycolysis and apoptosis regulator (TIGAR) expression, as well as NADPH synthesis, leading to additional increases in ROS production. The downregulation of CRIF1 suppressed cell proliferation and inhibited cell migration through the induction of G0/G1 phase cell cycle arrest in MCF-7 breast cancer cells. Similarly, the intratumoral injection of CRIF1 siRNA-encapsulated PLGA nanoparticles inhibited tumor growth, downregulated the assembly of mitochondrial OXPHOS complexes I and II, and induced the expression of cell cycle protein markers (p53, p21, and p16) in MCF-7 xenograft mice. Thus, the inhibition of mitochondrial OXPHOS protein synthesis through CRIF1 deletion destroyed mitochondrial function, leading to elevated ROS levels and inducing antitumor effects in MCF-7 cells
    corecore