55 research outputs found

    Assessing Re-Composition of Xing’an Larch in Boreal Forests after the 1987 Fire, Northeast China

    Get PDF
    Xing’an larch, a deciduous coniferous species, is the zonal tree of the Greater Xing’an Mountains in Northeast China. In May 1987, a catastrophic fire broke out in the mountains and burned 1.3 million hectares of forests in 26 days. While studies have shown that forest greenness has come back to normal in certain years, the re-composition of this zonal species has not been studied after the 1987 fire. With a series of Landsat 8 OLI images acquired in 2013–2015, this study builds the Normalized Difference Vegetation Index (NDVI) and Green Vegetation Index (GVI) time series in a complete growing cycle. A decision tree is developed to classify tree species with an overall accuracy of 86.16% and Kappa coefficient of 0.80. The re-composition of Xing’an larch after the 1987 fire is extracted, and its variations in areas under different fire intensities are statistically analyzed. Results show that Xing’an larch comprises 17.52%, 26.20% and 33.19% of forests in burned areas with high, medium and low fire intensities, respectively. Even around 30 years after the 1987 fire, the composition of this zonal species in boreal forest has not been fully recovered in the Greater Xing’an Mountains. The Xing’an larch map extracted in this study could serve as base information for ecological and environmental studies in this south end of the boreal Eurasia

    Attributions of emission-reduction and meteorological conditions to typical heavy pollution episodes in a cold metropolis, northeast China

    Get PDF
    Heavy pollution episodes frequently occurred in winter in northeast China due to the multiple anthropogenic emissions coupled with adverse meteorological conditions, which increased the difficulty of environmental pollution control. To better enact strategies for mitigating air pollution in the post-pandemic era, daily pollutant concentration monitoring and meteorological data were used to evaluate the changes and meteorological factors of air pollutants before (2019) and during (2020) the lockdown in Harbin City, northeast China. Moreover, typical pollution episodes under COVID-19 lockdown were identified, and their emission sources, meteorology conditions, and regional pollution transportation were analyzed. The results showed significant decreases in NO2, PM10 and CO, while O3 increased, and no differences in PM2.5 and SO2 during the lockdown compared with non-lockdown periods. It indicated that reduced activities of transportation resulted in reductions of NO2 concentrations by 16%, and stationary emission sources were less affected. Correlation between PM2.5 and O3 tended to change from positive to negative as the threshold of PM2.5 = 90 μg m−3, with the main controlling factor changed from their common gaseous precursors to meteorological conditions (temperature <0°C and wind speed <2 m s−1). Pollution days were concentrated in the COVID-19 lockdown period with PM2.5 as the primary pollutant. SO2 dominant pollution and PM2.5 dominant pollution were distinguished from six sustained heavy pollution events. PM2.5 and SO2 played essential roles in SO2 dominant pollution, which derived from local emissions of coal combustion and firework discharge. PM2.5 dominant pollution might be chemical transformed from coal burning, vehicle exhaust, and other secondary precursors, which was affected and aggravated by CO, NO2, high relative humidity and low wind speed affected by local emission and long-distance transport

    Mapping Soil Alkalinity and Salinity in Northern Songnen Plain, China with the HJ-1 Hyperspectral Imager Data and Partial Least Squares Regression

    Get PDF
    In arid and semi-arid regions, identifying and monitoring of soil alkalinity and salinity are in urgently need for preventing land degradation and maintaining ecological balances. In this study, physicochemical, statistical, and spectral analysis revealed that potential of hydrogen (pH) and electrical conductivity (EC) characterized the saline-alkali soils and were sensitive to the visible and near infrared (VIS-NIR) wavelengths. On the basis of soil pH, EC, and spectral data, the partial least squares regression (PLSR) models for estimating soil alkalinity and salinity were constructed. The R2 values for soil pH and EC models were 0.77 and 0.48, and the root mean square errors (RMSEs) were 0.95 and 17.92 dS/m, respectively. The ratios of performance to inter-quartile distance (RPIQ) for the soil pH and EC models were 3.84 and 0.14, respectively, indicating that the soil pH model performed well but the soil EC model was not considerably reliable. With the validation dataset, the RMSEs of the two models were 1.06 and 18.92 dS/m. With the PLSR models applied to hyperspectral data acquired from the hyperspectral imager (HSI) onboard the HJ-1A satellite (launched in 2008 by China), the soil alkalinity and salinity distributions were mapped in the study area, and were validated with RMSEs of 1.09 and 17.30 dS/m, respectively. These findings revealed that the hyperspectral images in the VIS-NIR wavelengths had the potential to map soil alkalinity and salinity in the Songnen Plain, China

    Spatial differentiation and influencing factors of active layer thickness in the Da Hinggan Ling Prefecture

    Get PDF
    Active layer thickness (ALT) of permafrost changes significantly under the combined influence of human activities and climate warming, which has a significant impact on the ecological environment, hydrology, and engineering construction in cold regions. The spatial differentiation of Active layer thickness and its influencing factors have become one of the hot topics in the field of cryopedology in recent years, but there are few studies in the Da Hinggan Ling Prefecture (DHLP). In this study, the Stefan equation was used to simulate the Active layer thickness in the Da Hinggan Ling Prefecture, and the factor detection and interaction detection functions of geodetector were used to analyze the factors affecting the spatial differentiation of Active layer thickness from both natural and humanity aspects. The results showed that Active layer thickness in the Da Hinggan Ling Prefecture ranges from 58.82 cm to 212.55 cm, the determinant coefficient R2, MAE, RMSE between simulation results and the sampling points data were 0.86, 11.25 (cm) and 13.25 (cm), respectively. Lower Active layer thickness values are mainly distributed higher elevations in the west, which are dominated by forest (average ALT: 136.94 cm) and wetlands (average ALT: 71.88 cm), while the higher values are distributed on cultivated land (average ALT: 170.35 cm) and construction land (average ALT: 176.49 cm) in the southeast. Among the influencing factors, elevation is significantly negatively correlated with ALT. followed by summer mean LST, SLHF and snow depth. NDVI and SM has the strong explanation power for the spatial differentiation of ALT in factor detection. Regarding interactions, the explanatory power of slope ∩ snow depth is the highest of 0.83, followed by the elevation ∩ distance to settlements. The results can provide reference for the formulation of ecological environmental protection and engineering construction policies in cold regions

    Environmental Influences on Forest Fire Regime in the Greater Hinggan Mountains, Northeast China

    Get PDF
    Fires are the major disturbances in the Greater Hinggan Mountains, the only boreal forest in Northeast China. A comprehensive understanding of the fire regimes and influencing environmental parameters driving them from small to large fires is critical for effective forest fire prevention and management. Assisted with satellite imagery, topographic data, and climatic records in this region, this study examines its fire regimes in terms of ignition causes, frequencies, seasonality, and burned sizes in the period of 1980–2005. We found an upward trend for fire occurrences and burned areas and an elongated fire season over the three decades. The dates of the first fire in a year did not vary largely but those of the last fire were significantly delayed. Topographically, spring fires were prevalent throughout the entire region, while summer fires mainly occurred at higher elevations under severe drought conditions. Fall fires were mostly human-caused in areas at lower elevations with gentle terrains. An ordinal logistic regression revealed temperature and elevation were both significant factors to the fire size severity in spring and summer. Other than that, environmental impacts were different. Precipitation in the preceding year greatly influenced spring fires, while summer fires were significantly affected by wind speed, fuel moisture, and human accessibility. An important message from this study is that distinct seasonal variability and a significantly increasing number of summer and fall fires since the mid-1990s suggest a changing fire regime of the boreal forests in the study area. The observed and modeled results could provide insights on establishing a sustainable, localized forest fire prevention strategy in a seasonal manner

    Environmental Influences on Forest Fire Regime in the Greater Hinggan Mountains, Northeast China

    Get PDF
    Fires are the major disturbances in the Greater Hinggan Mountains, the only boreal forest in Northeast China. A comprehensive understanding of the fire regimes and influencing environmental parameters driving them from small to large fires is critical for effective forest fire prevention and management. Assisted with satellite imagery, topographic data, and climatic records in this region, this study examines its fire regimes in terms of ignition causes, frequencies, seasonality, and burned sizes in the period of 1980–2005. We found an upward trend for fire occurrences and burned areas and an elongated fire season over the three decades. The dates of the first fire in a year did not vary largely but those of the last fire were significantly delayed. Topographically, spring fires were prevalent throughout the entire region, while summer fires mainly occurred at higher elevations under severe drought conditions. Fall fires were mostly human-caused in areas at lower elevations with gentle terrains. An ordinal logistic regression revealed temperature and elevation were both significant factors to the fire size severity in spring and summer. Other than that, environmental impacts were different. Precipitation in the preceding year greatly influenced spring fires, while summer fires were significantly affected by wind speed, fuel moisture, and human accessibility. An important message from this study is that distinct seasonal variability and a significantly increasing number of summer and fall fires since the mid-1990s suggest a changing fire regime of the boreal forests in the study area. The observed and modeled results could provide insights on establishing a sustainable, localized forest fire prevention strategy in a seasonal manner

    Remote Sensing of Soil Alkalinity and Salinity in the Wuyu’er-Shuangyang River Basin, Northeast China

    Get PDF
    The Songnen Plain of the Northeast China is one of the three largest soda saline-alkali regions worldwide. To better understand soil alkalinization and salinization in this important agricultural region, it is vital to explore the distribution and variation of soil alkalinity and salinity in space and time. This study examined soil properties and identified the variables to extract soil alkalinity and salinity via physico-chemical, statistical, spectral, and image analysis. The physico-chemical and statistical results suggested that alkaline soils, coming from the main solute Na2CO3 and NaHCO3 in parent rocks, characterized the study area. The pH and electric conductivity (EC ) were correlated with both narrow band and broad band reflectance. For soil pH, the sensitive bands were in short wavelength (VIS) and the band with the highest correlation was 475 nm (r = 0.84). For soil EC, the sensitive bands were also in VIS and the band with the highest correlation was 354 nm (r = 0.84). With the stepwise regression, it was found that the pH was sensitive to reflectance of OLI band 2 and band 6, while the EC was only sensitive to band 1. The R2Adj (0.73 and 0.72) and root mean square error (RMSE) (0.98 and 1.07 dS/m) indicated that, the two stepwise regression models could estimate soil alkalinity and salinity with a considerable accuracy. Spatial distributions of soil alkalinity and salinity were mapped from the OLI image with the RMSE of 1.01 and 0.64 dS/m, respectively. Soil alkalinity was related to salinity but most soils in the study area were non-saline soils. The area of alkaline soils was 44.46% of the basin. Highly alkaline soils were close to the Zhalong wetland and downstream of rivers, which could become a severe concern for crop productivity in this area

    Differentiation Rule and Driving Mechanisms of Collapse Disasters in Changbai County

    No full text
    The differentiation rule and driving mechanisms of collapse disasters in various regions are unclear, and the results from existing methods of research are not sufficiently scientific. To reveal the nature of collapse disasters, this study utilized data from the 1:50,000 geological disaster investigation results database, 1:50,000 topographic data, and TM images. Topography, human activity intensity, rock mass structure, hydrological conditions, vegetation status, and meteorological conditions were used as indicators in the DEA model to analyze their validity and to explore the differentiation law and driving mechanisms of the highway slope along the YaLu river, a location of frequent geological disasters in Changbai County. In the analysis process, each index was quantitatively graded, i.e., the number of disaster points corresponding to each index was used as an input index, and the number of disaster points and the scale and stability of disaster points corresponding to the graded quantitative index were used as the output indexes. The results of the analysis of the study area indicate that there are significant differences in geological disasters due to different regional characteristics. We carried out three evaluations and performed spatial superposition analysis of the indicators corresponding to the effective values and the regional collapse points. The driving factors of collapse disasters can be divided into three categories, namely the impact of human activities, rainfall, and gravity stress. The GIS analysis and mapping found that the collapse points located to the south of the Grand Canyon of Changbai County were primarily affected by rainfall. Additionally, the areas affected by activity intensity are mostly concentrated in county towns with concentrated populations and road slopes

    Differentiation Rule and Driving Mechanisms of Collapse Disasters in Changbai County

    No full text
    The differentiation rule and driving mechanisms of collapse disasters in various regions are unclear, and the results from existing methods of research are not sufficiently scientific. To reveal the nature of collapse disasters, this study utilized data from the 1:50,000 geological disaster investigation results database, 1:50,000 topographic data, and TM images. Topography, human activity intensity, rock mass structure, hydrological conditions, vegetation status, and meteorological conditions were used as indicators in the DEA model to analyze their validity and to explore the differentiation law and driving mechanisms of the highway slope along the YaLu river, a location of frequent geological disasters in Changbai County. In the analysis process, each index was quantitatively graded, i.e., the number of disaster points corresponding to each index was used as an input index, and the number of disaster points and the scale and stability of disaster points corresponding to the graded quantitative index were used as the output indexes. The results of the analysis of the study area indicate that there are significant differences in geological disasters due to different regional characteristics. We carried out three evaluations and performed spatial superposition analysis of the indicators corresponding to the effective values and the regional collapse points. The driving factors of collapse disasters can be divided into three categories, namely the impact of human activities, rainfall, and gravity stress. The GIS analysis and mapping found that the collapse points located to the south of the Grand Canyon of Changbai County were primarily affected by rainfall. Additionally, the areas affected by activity intensity are mostly concentrated in county towns with concentrated populations and road slopes

    Examining seasonal effect of urban heat island in a coastal city.

    No full text
    Urban heat islands (UHIs) have a significant and negative impact on the urban ecological environment and on human health, and it is imperative to examine factors that lead to UHIs. Although numerous studies have been conducted in this field, little research has considered seasonal variations in UHIs in coastal cities. Moreover, parametric statistical analyses, such as regression and correlation analyses, have been typically applied to examine the influential factors. Such analyses are flawed because they cannot uncover the complicated relationships between UHIs and their factors. Taking Dalian, a coastal city in China, as an example, this paper reveals the dynamic mechanism of the UHI effect for different seasons using the cubist regression tree algorithm. Analyses suggest that the UHI effect only exists in spring and summer, and no obvious UHIs can be found in autumn and winter. The adjacency to the sea leads to moderate UHI effects in spring and summer and no UHI or urban cooling island (UCI) effects in autumn and winter. The distance to the coastline, however, does not play a role in the UHI effect. Furthermore, as one of the most important factors, the vegetation coverage plays a significant role in the UHI effect in spring and summer and significantly mediates the UHI in autumn and winter. Comparatively, the elevation (e.g., digital elevation models (DEMs)) is consistently negatively associated with the land surface temperature in all seasons, although a stronger relationship was found in spring and summer. In addition, the surface slope is also a significant factor in spring and winter, and the population density impacts the UHI distribution in summer as well
    • …
    corecore