18 research outputs found

    Gut dysbiosis promotes the breakdown of oral tolerance mediated through dysfunction of mucosal dendritic cells

    No full text
    Summary: While dysbiosis in the gut is implicated in the impaired induction of oral tolerance generated in mesenteric lymph nodes (MesLNs), how dysbiosis affects this process remains unclear. Here, we describe that antibiotic-driven gut dysbiosis causes the dysfunction of CD11c+CD103+ conventional dendritic cells (cDCs) in MesLNs, preventing the establishment of oral tolerance. Deficiency of CD11c+CD103+ cDCs abrogates the generation of regulatory T cells in MesLNs to establish oral tolerance. Antibiotic treatment triggers the intestinal dysbiosis linked to the impaired generation of colony-stimulating factor 2 (Csf2)-producing group 3 innate lymphoid cells (ILC3s) for regulating the tolerogenesis of CD11c+CD103+ cDCs and the reduced expression of tumor necrosis factor (TNF)-like ligand 1A (TL1A) on CD11c+CD103+ cDCs for generating Csf2-producing ILC3s. Thus, antibiotic-driven intestinal dysbiosis leads to the breakdown of crosstalk between CD11c+CD103+ cDCs and ILC3s for maintaining the tolerogenesis of CD11c+CD103+ cDCs in MesLNs, responsible for the failed establishment of oral tolerance

    Quantitative Risk Assessment for the Introduction of Bovine Leukemia Virus-Infected Cattle Using a Cattle Movement Network Analysis

    No full text
    The cattle industry is suffering economic losses caused by bovine leukemia virus (BLV) and enzootic bovine leukosis (EBL), the clinical condition associated with BLV infection. This pathogen spreads easily without detection by farmers and veterinarians due to the lack of obvious clinical signs. Cattle movement strongly contributes to the inter-farm transmission of BLV. This study quantified the farm-level risk of BLV introduction using a cattle movement analysis. A generalized linear mixed model predicting the proportion of BLV-infected cattle was constructed based on weighted in-degree centrality. Our results suggest a positive association between weighted in-degree centrality and the estimated number of introduced BLV-infected cattle. Remarkably, the introduction of approximately six cattle allowed at least one BLV-infected animal to be added to the farm in the worst-case scenario. These data suggest a high risk of BLV infection on farms with a high number of cattle being introduced. Our findings indicate the need to strengthen BLV control strategies, especially along the chain of cattle movement

    Development of pooled testing system for porcine epidemic diarrhoea using real-time fluorescent reverse-transcription loop-mediated isothermal amplification assay

    No full text
    Abstract Background Porcine epidemic diarrhoea (PED) is an emerging disease in pigs that causes massive economic losses in the swine industry, with high mortality in suckling piglets. Early identification of PED virus (PEDV)-infected herd through surveillance or monitoring strategies is necessary for mass control of PED. However, a common working diagnosis system involves identifying PEDV-infected animals individually, which is a costly and time-consuming approach. Given the above information, the thrusts of this study were to develop a real-time fluorescent reverse transcription loop-mediated isothermal amplification (RtF-RT-LAMP) assay and establish a pooled testing system using faecal sample to identify PEDV-infected herd. Results In this study, we developed an accurate, rapid, cost-effective, and simple RtF- RT-LAMP assay for detecting the PEDV genome targeting M gene. The pooled testing system using the RtF-RT-LAMP assay was optimized such that a pool of at least 15 individual faecal samples could be analysed. Conclusions The developed RtF-RT-LAMP assay in our study could support the design and implementation of large-scaled epidemiological surveys as well as active surveillance and monitoring programs for effective control of PED

    Additional file 1: of Development of pooled testing system for porcine epidemic diarrhoea using real-time fluorescent reverse-transcription loop-mediated isothermal amplification assay

    No full text
    RT-LAMP primers design for PEDV nucleotide detection. Nucleotide sequence alignments of M gene of seven PEDV strains. Representative M gene sequences in each strain are aligned with clustalW. Sequence data of designing primers for RT-LAMP in this study (KT323979.1), the sequence used for RT-PCR (JX435310.1 and JN089738.1), the sequence of G1b S INDEL strain (KY619833.1), the sequence of G2b/Non S INDEL/North America strain (KY619838.1), the sequence of G2a/Non S INDEL/Asian strain (KJ960178.1), the sequence of NK96P4C6 G1a classical strain (KY619828). Primer recognition sites are indicated with primer names. (DOCX 28 kb
    corecore