577 research outputs found

    Microstructural stability and lattice misfit characterization of nimonic 263

    Get PDF
    Nimonic 263 has been selected as a candidate header/piping material of advanced ultra-supercritical (A-USC) boilers for the next generation of fossil fuel power plant. Experimental assessments on the microstructural stability of this material are presented in this paper. Microstructural evolution has been quantified by high resolution field emission SEM and TEM. Electron diffraction and the combined XRD and Gaussian peak-fitting have been applied to investigate the coherency and lattice misfit between the gamma prime precipitates and the gamma matrix. The microstructure subjected to solution and hardening treatment consists of gamma-matrix and a network of carbide precipitates along the grain boundaries. Large quantities of fine gamma prime-Ni3(Ti,Al) precipitates were observed, with an average size of 17 nm and coherent with the matrix lattice. The overall misfit has been quantified to be 0.28%. After long term aging at 700 and 725 °C for various periods up to 20,000 hours, gamma prime was still the predominant precipitate and mostly coherent with the matrix. A few needle-shape eta-Ni3Ti intermetallic precipitates were found in the grain boundary regions. The gamma prime size has grown progressively to 78 nm, accompanied by the gamma-gamma prime constrained misfit increasing to 0.50%. Moreover, the M23C6-type grain boundary carbides were found to have experienced morphological evolution, including the nucleation of Widmanstatten-type needles and their initial growth towards the matrix

    Suppression of Fracture Failure of Structures by Composite Design Based on Fracture Mechanics

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84743/1/Li_ICF11.pd

    Novel Ir-X thermal protection coatings designed for extreme aerodynamic heating environment

    Get PDF
    Due to the rapid evaporation of SiO2 protective layer, most Si-containing oxidation resistant coatings could not withstand a temperature above 1800℃, which is not enough for hypersonic voyage in upper atmosphere. With a higher melting point (2440℃) and lower oxygen permeability(10-20g·m-1·s-1), iridium is supposed to be a promising coating material for ultra-high temperature applications. However, Iridium has a low emissivity ε(0.017 for 2.5-25μm) and high recombination coefficient γ(0.64 at 1200℃) of atomic oxygen, resulting in a much higher thermal response compared with the ceramic materials under the same aerodynamic environment. To solve this problem, elements such as Al, Cr, Zr etc. were selected to modify pure Ir to form Ir-X (X=Al, Cr or Zr) coating. The modification element X in Ir-X coating forms high emissivity and low recombination coeffcient oxide on Ir, which meanwhile prevents the Ir from atomic oxygen. It was found that Ir-Al, Ir-Cr, Ir-Ti, Ir-Zr, Ir-Ta and Ir-Hf diffusion coating could be prepared via pack cementation. The recombination coefficient and emissivity of as-oxidized Ir-Al were changed to 0.0089 and 0.723, respectively. Please click Additional Files below to see the full abstract

    Knowledge Matters: Radiology Report Generation with General and Specific Knowledge

    Full text link
    Automatic radiology report generation is critical in clinics which can relieve experienced radiologists from the heavy workload and remind inexperienced radiologists of misdiagnosis or missed diagnose. Existing approaches mainly formulate radiology report generation as an image captioning task and adopt the encoder-decoder framework. However, in the medical domain, such pure data-driven approaches suffer from the following problems: 1) visual and textual bias problem; 2) lack of expert knowledge. In this paper, we propose a knowledge-enhanced radiology report generation approach introduces two types of medical knowledge: 1) General knowledge, which is input independent and provides the broad knowledge for report generation; 2) Specific knowledge, which is input dependent and provides the fine-grained knowledge for report generation. To fully utilize both the general and specific knowledge, we also propose a knowledge-enhanced multi-head attention mechanism. By merging the visual features of the radiology image with general knowledge and specific knowledge, the proposed model can improve the quality of generated reports. Experimental results on two publicly available datasets IU-Xray and MIMIC-CXR show that the proposed knowledge enhanced approach outperforms state-of-the-art image captioning based methods. Ablation studies also demonstrate that both general and specific knowledge can help to improve the performance of radiology report generation.Comment: Medical Image Analysi

    A monopolar symmetrical hybrid cascaded DC/DC converter for HVDC interconnections

    Get PDF
    With the rapid development of voltage source converter (VSC) based high voltage direct current (HVDC) transmission, it is an irresistible trend that HVDC grid will come into being. High-voltage and high-power DC/DC converters will serve as DC transformers in HVDC grid to interconnect DC lines with different voltage ratings. This paper proposes a monopolar symmetrical DC/DC converter which is composed of cascaded half-bridge sub-modules (SMs) and series-connected IGBTs. This hybrid topology features low capital costs, high efficiency, small footprint, and bidirectional power transfer capability. Operation principle, parameter design, and the control strategies of this topology are introduced. A 480MW, ±500kV/±160kV monopolar symmetrical DC/DC converter is simulated to verify its performance and evaluate the efficiency. In addition, a downscaled prototype rated at 2.4kW, ±300V/±100V has been built and tested. Experimental results further validate the effectiveness of the proposed DC/DC converter

    Axon Regeneration in Young Adult Mice Lacking Nogo-A/B

    Get PDF
    AbstractAfter injury, axons of the adult mammalian brain and spinal cord exhibit little regeneration. It has been suggested that axon growth inhibitors, such as myelin-derived Nogo, prevent CNS axon repair. To investigate this hypothesis, we analyzed mice with a nogo mutation that eliminates Nogo-A/B expression. These mice are viable and exhibit normal locomotion. Corticospinal tract tracing reveals no abnormality in uninjured nogo-A/B−/− mice. After spinal cord injury, corticospinal axons of young adult nogo-A/B−/− mice sprout extensively rostral to a transection. Numerous fibers regenerate into distal cord segments of nogo-A/B−/− mice. Recovery of locomotor function is improved in these mice. Thus, Nogo-A plays a role in restricting axonal sprouting in the young adult CNS after injury
    • …
    corecore