90 research outputs found

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30M⊙M_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Validation of Reference Genes for Real-Time Quantitative PCR (qPCR) Analysis of Avibacterium paragallinarum.

    No full text
    Real-time quantitative reverse transcription PCR (qRT-PCR) offers a robust method for measurement of gene expression levels. Selection of reliable reference gene(s) for gene expression study is conducive to reduce variations derived from different amounts of RNA and cDNA, the efficiency of the reverse transcriptase or polymerase enzymes. Until now reference genes identified for other members of the family Pasteurellaceae have not been validated for Avibacterium paragallinarum. The aim of this study was to validate nine reference genes of serovars A, B, and C strains of A. paragallinarum in different growth phase by qRT-PCR. Three of the most widely used statistical algorithms, geNorm, NormFinder and ΔCT method were used to evaluate the expression stability of reference genes. Data analyzed by overall rankings showed that in exponential and stationary phase of serovar A, the most stable reference genes were gyrA and atpD respectively; in exponential and stationary phase of serovar B, the most stable reference genes were atpD and recN respectively; in exponential and stationary phase of serovar C, the most stable reference genes were rpoB and recN respectively. This study provides recommendations for stable endogenous control genes for use in further studies involving measurement of gene expression levels

    Impact of supplement of Qingke flours on physiochemical properties, sensory and in vitro starch digestibility of wheat bread and its enhancement by bread quality improvers

    No full text
    The aim is to upgrade the formulation to produce wheat bread with lower starch digestibility by supplemented with Qingke flour. Physiochemical properties of multi-scale Qingke flours were examined to select the most satisfied Qingke flour for breadmaking. Data showed multi-scale Qingke samples differed in total starch content, water/oil binding capacity, freeze–thaw stability, but had similar swelling capacity and thermodynamic properties. Addition of Qingke flours significantly reduced the total in vitro starch digestion of bread from 80% to 41% and decreased the rapidly digested starch content from 53% to 27%. However, Qingke flours caused a worse bread quality, texture and sensory e.g. lower bread specific volume (4.26–3.3 mL/g), larger hardness (398–1170 g) and chewiness (296–707 mJ). Meanwhile, hydroxypropyl methylcellulose, sodium stearoyl lactylate and transglutaminase could improve the bread quality and sensory. Lastly, results revealed Qingke-supplemented bread could generate new volatile compounds, hence having a different aroma compared to original wheat bread

    Pilot-Scale Radio Frequency-Assisted Pasteurization of Chili Powders Prepacked by Different Packaging Films

    No full text
    Radio frequency (RF) can penetrate most packaging films and has the advantages of pasteurizing prepackaged low-moisture foods and avoiding secondary contamination. The suitable films for prepacking chili powders and the corresponding pasteurization process are unclear. This study aimed to select a suitable film for prepackaging chili powders, optimize the parameters of RF heating prepackaged chili powders, and evaluate the effects of RF-assisted pasteurization on the quality of chili powders. The results showed that the non-woven fabric (NWF) is suitable for prepackaging chili powders by evaluating the influence of RF heating on packaging films (appearance, sealing performance, mechanical properties.). Using NWF, chili powders inoculated with Salmonella enterica Enteritidis PT 30 still achieved 6.81 ± 0.64 log CFU/g reduction, treated by RF heating at an average temperature of 67.06 °C for 7.5 min with an electrode gap of 110 mm, held for 12.5 min at a hot-air convection oven. The pasteurization process had no significant (p > 0.05) effect on the quality (appearance, volatile, and capsaicin) of chili powders. The results indicated that chili powders packed with NWF could still be effectively pasteurized by RF-assisted hot air. This study proposed a viable approach to avoid secondary contamination by adding packaging before pasteurization

    Effects of Sequential Enzymolysis and Glycosylation on the Structural Properties and Antioxidant Activity of Soybean Protein Isolate

    No full text
    The effects of limited hydrolysis following glycosylation with dextran on the structural properties and antioxidant activity of the soybean protein isolate (SPI) were investigated. Three SPI hydrolysate (SPIH) fractions, F30 (>30 kDa), F30-10 (10–30 kDa), and F10 (<10 kDa), were confirmed using gel permeation chromatography. The results demonstrated that the glycosylation of F30 was faster than that of F30-10 or F10. The enzymolysis caused the unfolding of the SPI to expose the internal hydrophobic cores, which was further promoted by the grafting of dextran, making the obtained conjugates have a loose spatial structure, strong molecular flexibility, and enhanced thermal stability. The grafting of dextran significantly enhanced the DPPH radical or •OH scavenging activity and the ferrous reducing power of the SPI or SPIH fractions with different change profiles due to their different molecular structures. The limited enzymolysis following glycosylation was proven to be a promising way to obtain SPI-based food ingredients with enhanced functionalities

    Gene expression stability rankings for different growth phase in <i>A</i>. <i>paragallinarum</i> serovar B analyzed by geNorm.

    No full text
    <p>Gene expression stability rankings for different growth phase in <i>A</i>. <i>paragallinarum</i> serovar B analyzed by geNorm.</p

    Optical conductivity of an electron gas driven by a pulsed terahertz radiation field

    No full text
    We present a theoretical study to examine the optical conductivity of an electron gas in the presence of a pulsed terahertz (THz) radiation field. Applying a very simple Drude like approach, we calculate the transit current for an electron gas driven by a pulsed light field. By taking three types of the pulsed radiation fields with different analytical forms, we prove analytically or numerically that although the corresponding transit current depends on the shape of the radiation field in time-domain, the optical conductivity in frequency-domain is independent upon the profile of the pulsed light field when optical conductivity in frequency-domain is obtained by Fourier transformation of both the pulsed radiation field and the transit current. Thus, the optical conductivity in frequency-domain can be described by the well known Drude formula even in the presence of the pulsed THz field. This finding can be applied for experimental measurement of the real and imaginary parts of optical conductivity in electronic and optoelectronic materials by using, e.g., the THz time-domain spectroscopy (TDS)
    • …
    corecore