143 research outputs found

    Validation of the Accuracy of Different Precipitation Datasets over Tianshan Mountainous Area

    Get PDF
    Precipitation is one of the important water supplies in the arid and semiarid regions of northwestern China, playing a vital role in maintaining the fragile ecosystem. In remote mountainous area, it is difficult to obtain an accurate and reliable spatialization of the precipitation amount at the regional scale due to the inaccessibility, the sparsity of observation stations, and the complexity of relationships between precipitation and topography. Furthermore, accurate precipitation is important driven data for hydrological models to assess the water balance and water resource for hydrologists. Therefore, the use of satellite remote sensing becomes an important means over mountainous area. Precipitation datasets based on station data or pure satellite data have been increasingly available in spite of several weaknesses. This paper evaluates the usefulness of three precipitation datasets including TRMM 3B43_V6, 3B43_V7, and Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation with rain gauge data over Tianshan mountainous area where precipitation data is scarce. The results suggest that precipitation measurements only provided accurate information on a small scale, while the satellite remote sensing of precipitation had obvious advantages in basin scale or large scale especially over remote mountainous area

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p

    High-Mobility and Bias-Stable Field-Effect Transistors Based on Lead-Free Formamidinium Tin Iodide Perovskites

    Get PDF
    Electronic devices based on tin halide perovskites often exhibit a poor operational stability. Here, we report an additive engineering strategy to realize high-performance and stable field-effect transistors (FETs) based on 3D formamidinium tin iodide (FASnI3) films. By comparatively studying the modification effects of two additives, i.e., phenethylammonium iodide and 4-fluorophenylethylammonium iodide via combined experimental and theoretical investigations, we unambiguously point out the general effects of phenethylammonium (PEA) and its fluorinated derivative (FPEA) in enhancing crystallization of FASnI3 films and the unique role of fluorination in reducing structural defects, suppressing oxidation of Sn2+ and blocking oxygen and water involved defect reactions. The optimized FPEA-modified FASnI3 FETs reach a record high field-effect mobility of 15.1 cm2/(V·s) while showing negligible hysteresis. The devices exhibit less than 10% and 3% current variation during over 2 h continuous bias stressing and 4200-cycle switching test, respectively, representing the best stability achieved so far for all Sn-based FETs.</p

    Retrospective analysis of main and interaction effects in genetic association studies of human complex traits

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The etiology of multifactorial human diseases involves complex interactions between numerous environmental factors and alleles of many genes. Efficient statistical tools are demanded in identifying the genetic and environmental variants that affect the risk of disease development. This paper introduces a retrospective polytomous logistic regression model to measure both the main and interaction effects in genetic association studies of human discrete and continuous complex traits. In this model, combinations of genotypes at two interacting loci or of environmental exposure and genotypes at one locus are treated as nominal outcomes of which the proportions are modeled as a function of the disease trait assigning both main and interaction effects and with no assumption of normality in the trait distribution. Performance of our method in detecting interaction effect is compared with that of the case-only model.</p> <p>Results</p> <p>Results from our simulation study indicate that our retrospective model exhibits high power in capturing even relatively small effect with reasonable sample sizes. Application of our method to data from an association study on the catalase -262C/T promoter polymorphism and aging phenotypes detected significant main and interaction effects for age-group and allele T on individual's cognitive functioning and produced consistent results in estimating the interaction effect as compared with the popular case-only model.</p> <p>Conclusion</p> <p>The retrospective polytomous logistic regression model can be used as a convenient tool for assessing both main and interaction effects in genetic association studies of human multifactorial diseases involving genetic and non-genetic factors as well as categorical or continuous traits.</p

    Temperature-Dependent Interplay between Structural and Charge Carrier Dynamics in CsMAFA-Based Perovskites

    Get PDF
    State-of-the-art triple cation, mixed halide perovskites are extensively studied in perovskite solar cells, showing very promising performance and stability. However, an in-depth fundamental understanding of how the phase behavior in Cs0.05FA0.85MA0.10Pb(I0.97Br0.03)3 (CsMAFA) affects the optoelectronic properties is still lacking. The refined unit cell parameters a and c in combination with the thermal expansion coefficients derived from X-ray diffraction patterns reveal that CsMAFA undergoes an α–β phase transition at ≈280 K and another transition to the γ-phase at ≈180 K. From the analyses of the electrodeless microwave photoconductivity measurements it is shown that shallow traps only in the γ-phase negatively affect the charge carrier dynamics. Most importantly, CsMAFA exhibits the lowest amount of microstrain in the β-phase at around 240 K, corresponding to the lowest amount of trap density, which translates into the longest charge carrier diffusion length for electrons and holes. Below 200 K a considerable increase in deep trap states is found most likely related to the temperature-induced compressive microstrain leading to a huge imbalance in charge carrier diffusion lengths between electrons and holes. This work provides valuable insight into how temperature-dependent changes in structure affect the charge carrier dynamics in FA-rich perovskites.</p

    Splenectomy Normalizes Hematocrit in Murine Polycythemia Vera

    Get PDF
    Splenic enlargement (splenomegaly) develops in numerous disease states, although a specific pathogenic role for the spleen has rarely been described. In polycythemia vera (PV), an activating mutation in Janus kinase 2 (JAK2V617) induces splenomegaly and an increase in hematocrit. Splenectomy is sparingly performed in patients with PV, however, due to surgical complications. Thus, the role of the spleen in the pathogenesis of human PV remains unknown. We specifically tested the role of the spleen in the pathogenesis of PV by performing either sham (SH) or splenectomy (SPL) surgeries in a murine model of JAK2V617F-driven PV. Compared to SH-operated mice, which rapidly develop high hematocrits after JAK2V617F transplantation, SPL mice completely fail to develop this phenotype. Disease burden (JAK2V617) is equivalent in the bone marrow of SH and SPL mice, however, and both groups develop fibrosis and osteosclerosis. If SPL is performed after PV is established, hematocrit rapidly declines to normal even though myelofibrosis and osteosclerosis again develop independently in the bone marrow. In contrast, SPL only blunts hematocrit elevation in secondary, erythropoietin-induced polycythemia. We conclude that the spleen is required for an elevated hematocrit in murine, JAK2V617F-driven PV, and propose that this phenotype of PV may require a specific interaction between mutant cells and the spleen

    Efficacious Intermittent Dosing of a Novel JAK2 Inhibitor in Mouse Models of Polycythemia Vera

    Get PDF
    A high percentage of patients with the myeloproliferative disorder polycythemia vera (PV) harbor a Val617→Phe activating mutation in the Janus kinase 2 (JAK2) gene, and both cell culture and mouse models have established a functional role for this mutation in the development of this disease. We describe the properties of MRLB-11055, a highly potent inhibitor of both the WT and V617F forms of JAK2, that has therapeutic efficacy in erythropoietin (EPO)-driven and JAK2V617F-driven mouse models of PV. In cultured cells, MRLB-11055 blocked proliferation and induced apoptosis in a manner consistent with JAK2 pathway inhibition. MRLB-11055 effectively prevented EPO-induced STAT5 activation in the peripheral blood of acutely dosed mice, and could prevent EPO-induced splenomegaly and erythrocytosis in chronically dosed mice. In a bone marrow reconstituted JAK2V617F-luciferase murine PV model, MRLB-11055 rapidly reduced the burden of JAK2V617F-expressing cells from both the spleen and the bone marrow. Using real-time in vivo imaging, we examined the kinetics of disease regression and resurgence, enabling the development of an intermittent dosing schedule that achieved significant reductions in both erythroid and myeloid populations with minimal impact on lymphoid cells. Our studies provide a rationale for the use of non-continuous treatment to provide optimal therapy for PV patients
    • …
    corecore