3 research outputs found

    Introducing MINA-The Molecularly Imprinted Nanoparticles Assay

    Get PDF
    A new ELISA‐ (enzyme‐linked immunosorbent assay)‐like assay is demonstrated in which no elements of biological origin are used for molecular recognition or signaling. Composite imprinted nanoparticles that contain a catalytic core and which are synthesized by using a solid‐phase approach can simultaneously act as recognition/signaling elements, and be used with minimal modifications to standard assay protocols. This assay provides a new route towards replacement of unstable biomolecules in immunoassays

    Benzoxazine Copolymers with Mono- and Difunctional Epoxy Active Diluents with Enhanced Tackiness and Reduced Viscosity

    No full text
    The influence of epoxy active diluents, 1,4-butanediol diglycidyl ether (BD) and furfuryl glycidyl ether (FUR), in the mixtures with benzoxazine monomer based on bisphenol A, formaldehyde and m-toluidine (BA-mt), on the properties of a matrix was disclosed in this work. Resins were modified to achieve good tackiness at room temperature and reduced viscosity. The influence of mono- and difunctional modifiers on the process of curing was studied by way of differential scanning calorimetry and oscillatory rheology. The addition of BD and FUR shifted the curing peak to higher temperatures and significantly reduced viscosity. Preferable tackiness at ambient temperature was achieved with 10 phr of epoxy components in mixtures. However, cured blends with difunctional epoxy BD had an advantage over monofunctional FUR in enhanced tensile strength with remaining glass transition temperature at the level of neat benzoxazine (217 °C)

    Measurement of analysing powers for neutron scattering on CH2, CH, C and Cu target for momenta from 3.0 to 4.2 GeV/c

    Get PDF
    During two beam runs in the years 2016 and 2017, the analyzing powers (Ay) for protons and neutrons scattering on CH2, CH, C and Cu targets were measured at the nucleon momentum from 3.0 to 4.2 GeV/c with the ALPOM2 setup at the Nuclotron accelerator. The data for polarized neutron beam are obtained for the first time, thanks to the unique polarized deuteron beam that is presently available up to 13 GeV/c. Earlier, analyzing powers for polarized neutrons had been measured only for thin hydrogen targets. Cross sections and analyzing powers for np, for both elastic scattering and charge exchange are known up to 29 GeV/c. No data existed for thick analyzers. The measurement of the angular dependence of Ay for the neutron is essential to the continuation of the neutron form factor measurements to the highest possible transferred momentum-Q2 at the Jefferson Laboratory. The reaction p+Cu(W), with the detection of a neutron in the forward direction by a hadron calorimeter, can be used for the measurement of the proton polarization at the future NICA collider
    corecore