13 research outputs found

    Π¦ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²Ρ‹ΠΉ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с сочСтанной ΠΊΠ°Ρ€Π΄ΠΈΠΎ- ΠΈ ΠΎΡ„Ρ‚Π°Π»ΡŒΠΌΠΎΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ

    Get PDF
    БочСтанная кардиологичСская ΠΈ ΠΎΡ„Ρ‚Π°Π»ΡŒΠΌΠΎΠ»ΠΎΠ³ΠΈΡ‡Π΅ΡΠΊΠ°Ρ патология ΠΈΠΌΠ΅Π΅Ρ‚ Π²Ρ‹ΡΠΎΠΊΡƒΡŽ Ρ€Π°ΡΠΏΡ€ΠΎΡΡ‚Ρ€Π°Π½Ρ‘Π½Π½ΠΎΡΡ‚ΡŒ Π² ΡΡ‚Π°Ρ€ΡˆΠΈΡ… возрастных Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… насСлСния ΠΈ ΠΎΠ±Ρ‰ΠΈΠ΅ патогСнСтичСскиС ΠΌΠ΅Ρ…Π°Π½ΠΈΠ·ΠΌΡ‹, ΠΊ числу ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ…, бСзусловно, относится Π½Π°Ρ€ΡƒΡˆΠ΅Π½ΠΈΠ΅ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ профиля. Однако Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²Ρ‹ΠΉ ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒ ΠΊΡ€ΠΎΠ²ΠΈ практичСски Π½Π΅ анализировался Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² ΠΏΠΎΠΆΠΈΠ»ΠΎΠ³ΠΎ возраста с сочСтанной ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ. ЦСль исслСдования – ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ профиля Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с сочСтанной ΠΊΠ°Ρ€Π΄ΠΈΠΎ- ΠΈ ΠΎΡ„Ρ‚Π°Π»ΡŒΠΌΠΎΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ. ИсслСдованиС Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π² Вамбовском Ρ„ΠΈΠ»ΠΈΠ°Π»Π΅ МНВК Β«ΠœΠΈΠΊΡ€ΠΎΡ…ΠΈΡ€ΡƒΡ€Π³ΠΈΡ Π³Π»Π°Π·Π° ΠΈΠΌΠ΅Π½ΠΈ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊΠ° Π‘.Н. Π€Π΅Π΄ΠΎΡ€ΠΎΠ²Π°Β» Π² Π΄Π²ΡƒΡ… Π³Ρ€ΡƒΠΏΠΏΠ°Ρ…: ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ с сочСтанной ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ (n=58 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ) ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Ρ‹ с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца (n=49 Ρ‡Π΅Π»ΠΎΠ²Π΅ΠΊ), ΠΈΠΌΠ΅ΡŽΡ‰ΠΈΡ… Π² ΠΎΠ±ΠΎΠΈΡ… случаях ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²Ρ‹ΠΉ возраст 60-74 Π»Π΅Ρ‚. Диагностика Π³Π»Π°ΡƒΠΊΠΎΠΌΡ‹ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° Π² соотвСтствии с критСриями Β«ΠΠ°Ρ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ руководства ΠΏΠΎ Π³Π»Π°ΡƒΠΊΠΎΠΌΠ΅Β». Для диагностики ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ сСрдца Π²Ρ‹ΠΏΠΎΠ»Π½ΡΠ»ΠΈΡΡŒ элСктрокардиографичСскиС, эхокардиографичСскиС, рСнтгСнографичСскиС, энзимныС исслСдования. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡŒ Π½Π° Π°ΠΏΠΏΠ°Ρ€Π°Ρ‚Π΅ Β«Beckton Dickinson FACS Canto 2 (USA)Β» с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡ€Π° CBA (BD Biosciences, USA). Π‘Ρ€Π΅Π΄ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² сравниваСмых Π³Ρ€ΡƒΠΏΠΏ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ возраста выявлСны достовСрныС различия ΠΏΠΎ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Ρƒ Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ², Π° ΠΈΠΌΠ΅Π½Π½ΠΎ прСимущСствСнноС ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с сочСтанной ΠΊΠ°Ρ€Π΄ΠΈΠΎ- ΠΈ ΠΎΡ„Ρ‚Π°Π»ΡŒΠΌΠΎΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ Π³Ρ€ΡƒΠΏΠΏΡ‹ с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца. ΠŸΠΎΠ²Ρ‹ΡΠΈΠ»ΠΎΡΡŒ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡ€ΠΎΠ²ΠΈ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца, сочСтанной с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ, содСрТаниС IL-5, IL-12, IFN-Ξ³, TNF-Ξ± c достовСрным Ρ€Π°Π·Π»ΠΈΡ‡ΠΈΠ΅ΠΌ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌΠΈ с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца. Однако Π½Π°ΠΈΠ²Ρ‹ΡΡˆΠ΅Π΅ ΡƒΠ²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ срСди рассматриваСмых Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½ΠΎ для IL-6 ΠΈ IL-17, ΡΠΎΡΡ‚Π°Π²ΠΈΠ²ΡˆΠ΅Π΅ Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с сочСтанной ΠΊΠ°Ρ€Π΄ΠΈΠΎ- ΠΈ ΠΎΡ„Ρ‚Π°Π»ΡŒΠΌΠΎΠΏΠ°Ρ‚ΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ 23,8Β±1,1 ΠΏΠ³/ΠΌΠ» ΠΈ 20,2Β±1,7 ΠΏΠ³/ΠΌΠ» ΠΏΡ€ΠΎΡ‚ΠΈΠ² 6,3Β±0,3 ΠΏΠ³/ΠΌΠ» ΠΈ 7,9Β±0,5 ΠΏΠ³/ΠΌΠ» соотвСтствСнно Ρƒ ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца. ВмСстС с Ρ‚Π΅ΠΌ сущСствСнно снизился ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ IL-4 ΠΈ IL-10 Π΄ΠΎ 2,2Β±0,2 ΠΏΠ³/ΠΌΠ» ΠΈ 6,4Β±0,4 ΠΏΠ³/ΠΌΠ» ΠΏΡ€ΠΎΡ‚ΠΈΠ² 4,8Β±0,3 ΠΏΠ³/ΠΌΠ» ΠΈ 11,9Β±0,6 ΠΏΠ³/ΠΌΠ». ИспользованиС логистичСской рСгрСссии ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ риска ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² ΠΊΡ€ΠΎΠ²ΠΈ ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ нСскоррСктированныС ΠΈ скоррСктированныС ΠΌΠΎΠ΄Π΅Π»ΠΈ, согласно ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ тСсная ассоциация с риском развития сочСтанной ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ сСрдца с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ установлСна для IL-6 ΠΈ IL-17, с Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π°ΠΌΠΈ ΠΎΡ‚Π½ΠΎΡΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ риска Π² нСскоррСктированной ΠΌΠΎΠ΄Π΅Π»ΠΈ 2,87 ΠΈ 2,71 соотвСтствСнно (p<0,001). Однако Π² скоррСктированной ΠΌΠΎΠ΄Π΅Π»ΠΈ ассоциация IL-6 с сочСтанной ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ ΠΏΠΎΠ²Ρ‹ΡΠΈΠ»Π°ΡΡŒ Π΄ΠΎ 2,92 (Π”Π˜ 2,80-3,27, Ρ€=0,004), Π° IL-17 ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΠ»ΠΎΡΡŒ Π΄ΠΎ 2,64 (Π”Π˜ 2,51-2,85, Ρ€=0,003). УстановлСна Ρ‚Π°ΠΊΠΆΠ΅ достовСрная ассоциация IL-4, IL-5, IL-12, IFN-Ξ³ ΠΈ TNF-Ξ± с сочСтанной ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ. ИсслСдованиС продСмонстрировало Π½ΠΎΠ²Ρ‹Π΅ ассоциации систСмных Ρ†ΠΈΡ‚ΠΎΠΊΠΈΠ½ΠΎΠ² с риском развития сочСтанной ΠΈΡˆΠ΅ΠΌΠΈΡ‡Π΅ΡΠΊΠΎΠΉ болСзнью сСрдца с Π³Π»Π°ΡƒΠΊΠΎΠΌΠΎΠΉ

    Nonlinear Problems of Equilibrium Charge State Transport in Hot Plasmas

    No full text
    The general coupling between particle transport and ionization-recombination processes in hot plasma is considered on the key concept of equilibrium charge state (CS) transport. A theoretical interpretation of particle and CS transport is gained in terms of a two-dimensional (2D) Markovian stochastic (random) processes, a discrete 2D Fokker-Plank-Kolmogorov equation (in charge and space variables) and generalized 2D coronal equilibrium between atomic processes and particle transport. The basic tool for analysis of CS equilibrium and transport is the equilibrium cell (EC) (two states on charge and two on space), which presents simultaneously a unit phase volume, the characteristic scales (in space and time) of local equilibrium, and a comprehensive solution for the simplest nonlinear relations between transport and atomic processes. The space-time relationships between the equilibrium constant, transport rates, density distributions, and impurity confinement time are found. The subsequent direct calculation of the total and partial density profiles and the transport coefficients of argon impurity showed a strong dependence of the 2D CS equilibrium and transport on the atomic structure of ions. A model for recovering the recombination rate profiles of carbon impurity was developed basing on the CS equilibrium conditions, the derived relationships, the data about density profiles, plasma parameters and ionization rates

    Hydrogen Spectral Line Shape Formation in the SOL of Fusion Reactor Plasmas

    Get PDF
    The problems related to the spectral line-shape formation in the scrape of layer (SOL) in fusion reactor plasma for typical observation chords are considered. The SOL plasma is characterized by the relatively low electron density (1012–1013 cmβˆ’3) and high temperature (from 10 eV up to 1 keV). The main effects responsible for the line-shape formation in the SOL are Doppler and Zeeman effects. The main problem is a correct modeling of the neutral atom velocity distribution function (VDF). The VDF is determined by a number of atomic processes, namely: molecular dissociation, ionization and charge exchange of neutral atoms on plasma ions, electron excitation accompanied by the charge exchange from atomic excited states, and atom reflection from the wall. All the processes take place step by step during atom motion from the wall to the plasma core. In practice, the largest contribution to the neutral atom radiation emission comes from a thin layer near the wall with typical size 10–20 cm, which is small as compared with the minor radius of modern devices including international test experimental reactor ITER (radius 2 m). The important problem is a strongly non-uniform distribution of plasma parameters (electron and ion densities and temperatures). The distributions vary for different observation chords and ITER operation regimes. In the present report, most attention is paid to the problem of the VDF calculations. The most correct method for solving the problem is an application of the Monte Carlo method for atom motion near the wall. However, the method is sometimes too complicated to be combined with other numerical codes for plasma modeling for various regimes of fusion reactor operation. Thus, it is important to develop simpler methods for neutral atom VDF in space coordinates and velocities. The efficiency of such methods has to be tested via a comparison with the Monte Carlo codes for particular plasma conditions. Here a new simplified method for description of neutral atoms penetration into plasma is suggested. The method is based on the ballistic motion of neutrals along the line-of-sight (LoS) in the forward–back approximation. As a result, two-dimensional distribution functions, dependent on the LoS coordinate and the velocity projection on the LoS, and responsible for the Doppler broadening of the line shape, are calculated. A comparison of the method with Monte Carlo calculations allows the evaluation of the accuracy of the ballistic model. The Balmer spectral line shapes are calculated for specific LoS typical for ITER diagnostic

    Tungsten Ions in Plasmas: Statistical Theory of Radiative-Collisional Processes

    No full text
    The statistical model for calculations of the collisional-radiative processes in plasmas with tungsten impurity was developed. The electron structure of tungsten multielectron ions is considered in terms of both the Thomas-Fermi model and the Brandt-Lundquist model of collective oscillations of atomic electron density. The excitation or ionization of atomic electrons by plasma electron impacts are represented as photo-processes under the action of flux of equivalent photons introduced by E. Fermi. The total electron impact single ionization cross-sections of ions Wk+ with respective rates have been calculated and compared with the available experimental and modeling data (e.g., CADW). Plasma radiative losses on tungsten impurity were also calculated in a wide range of electron temperatures 1 eV–20 keV. The numerical code TFATOM was developed for calculations of radiative-collisional processes involving tungsten ions. The needed computational resources for TFATOM code are orders of magnitudes less than for the other conventional numerical codes. The transition from corona to Boltzmann limit was investigated in detail. The results of statistical approach have been tested by comparison with the vast experimental and conventional code data for a set of ions Wk+. It is shown that the universal statistical model accuracy for the ionization cross-sections and radiation losses is within the data scattering of significantly more complex quantum numerical codes, using different approximations for the calculation of atomic structure and the electronic cross-sections

    New approach to development and manufacturing technologies of duplex steel

    No full text
    We conducted a brief review of current production and application of duplex and super duplex steels for manufacture of equipment exposed to the hazard of sulphide stress-corrosion cracking, sea water and other corrosive environment. The super duplex steel with enhanced corrosion-mechanical characteristics in comparison with the known steels of austenitic-ferritic class was developed. Based on the concepts of formation of a special structure of two-phase austenitic-ferritic steels in the process of crystallization, the possibilities of compositional, technological, thermal and special impact techniques are considered and advanced ways of controlling physical, chemical, structural homogeneity and properties of super duplex steels are developed. Electroslag remelting with the application of low-frequency alternating current provides effective control over the length of the two-phase area, the size of the primary dendrites of the austenitic and ferritic phases, the average distance between their axes, the parameters of the crystallizing cell, the development of liquation phenomena and the size of the growing non-metallic phases. Within framework of the proposed approach, the thermodynamic and kinetic conditions for the formation and growth of hardening phases are assessed, a new composition and a complex technology for the manufacture of corrosion-resistant super duplex steels for gas and oil production equipment has been developed. Thermodynamically stable, having sizes of 30-300 nm, niobium nitrides and carbonitrides are located inside the grains of the ferritic phase. At the same time, the sigma phase and chromium carbide precipitates at the intergrain boundaries are not observed. The results of the determination of mechanical and corrosion properties in accordance with the NACE TM 0177 standard (method A), tests of corrosion witness-samples in field conditions demonstrate the advantages and prospects of using new super duplex steel for the manufacture of oil and gas production equipment operating in an environment with high H2S content and CO2 under significant mechanical loads, without the risk of brittle fracture

    New generation of super duplex steels for equipment gas and oil production

    No full text
    Oil&gas producing industry today is increased production volumes from old deposits on land, offshore and deep-water. The materials used to create modern equipment that meets these trends should be distinguished by increased productivity in conditions of corrosion and high pressure, to ensure trouble-free operation. In such conditions, taking into account the necessary provision of acceptable cost indicators, there is no alternative to duplex steels. Their crystal structure simultaneously allows using the advantages of ferritic and austenitic phases. The report presents the results of using a compositional and technological methods for structure management, the rationale alloying with copper (3.0-3.3%). Application of ESR in the manufacture of steel billets of super duplex steel has demonstrated the ability to simultaneously achieve physical, chemical and structural homogeneity, ensuring high corrosion&mechanical characteristics. The thermodynamic and kinetic conditions for the formation of optimal phase steel composition are determined. Grounded heat treatment regimes, prevent the formation of sigma and psi-phase and contribute to the formation of stable intermetallides (30-300 nm). Based on the test results of β€œGazprom-VNIIGAZ” LLC the new steel is recommended for the manufacture of valve bodies and in-vessel internals used in the fields, that containing H2S and CO2 up to 25% in the fluid

    Reduction of deficit in binders for backfilling mixtures

    No full text
    Relevance and aim of the study. Improving the quality of metal ores in development of complex deposits by underground method is provided by the use of technology with the laying of the cavities hardening compounds, but the extension of the scope of technology development with the laying of the cavities hardening mixtures is limited by lack of binding cements. Reduction of deficit in binders as a means of improving the quality of extracted ores through the involvement of mineral waste in production is an urgent task of mining science and the aim of the research. Methods. Research methodology includes the analysis of efficiency of ore extraction through the use of anthropogenic resources in underground development of deposits of metal ores, activation of components of solid mixtures in a laboratory ball mill for differentiated parts of the backfill array and interpretation of the results. Results. The authors have proved the possibility of reducing the deficit in the goods by making the binder solid mixtures on the basis of the utilized slag. The paper introduces the results of studies of the activation parameters of the granulated blast furnace slag in ball mill. The authors determined the concrete mixture strength dependence on duration of slag activation and recommended the economicmathematical model to determine the amount of profit from the disposal of tailings the metallurgical mining industry, taking into account the lost in ore extraction. It is shown that the disposal of hazardous during storage of mineral waste allows solving a set of problems in mining industry. Conclusions. Improving the quality of ores in their extraction and extension of application area of resource-saving technologies of exploration with voids bookmark with hardening mixtures is achieved by using available and cheap tails of technological processes

    Reduction of deficit in binders for backfilling mixtures

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈ Ρ†Π΅Π»ΡŒ исслСдования. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ качСства мСталличСских Ρ€ΡƒΠ΄ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ слоТноструктурных мСстороТдСний ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹ΠΌ способом обСспСчиваСтся использованиСм Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ с Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ пустот Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΠΌΠΈ смСсями, Π½ΠΎ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ области примСнСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ с Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ пустот Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΠΌΠΈ смСсями ограничиваСтся Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ΠΎΠΌ вяТущих Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° вяТущих ΠΊΠ°ΠΊ срСдство ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ качСства Π΄ΠΎΠ±Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Ρ€ΡƒΠ΄ ΠΏΡƒΡ‚Π΅ΠΌ вовлСчСния Π² производство ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ Π³ΠΎΡ€Π½ΠΎΠΉ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ†Π΅Π»ΡŒΡŽ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° исслСдования Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Π°Π½Π°Π»ΠΈΠ· эффСктивности Π΄ΠΎΠ±Ρ‹Ρ‡ΠΈ Ρ€ΡƒΠ΄ Π·Π° счСт использования Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… рСсурсов ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΠΎΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ мСстороТдСний мСталличСских Ρ€ΡƒΠ΄, Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΡ… смСсСй Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΡˆΠ°Ρ€ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Π»ΡŒΠ½ΠΈΡ†Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎ для частСй Π·Π°ΠΊΠ»Π°Π΄ΠΎΡ‡Π½ΠΎΠ³ΠΎ массива ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡŽ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Обоснована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° Ρ‚ΠΎΠ²Π°Ρ€Π½Ρ‹Ρ… вяТущих ΠΏΡƒΡ‚Π΅ΠΌ изготовлСния Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΡ… смСсСй Π½Π° основС ΡƒΡ‚ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… мСталлургичСских шлаков. Π”Π°Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π³Ρ€Π°Π½ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ шлака Π² ΡˆΠ°Ρ€ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Π»ΡŒΠ½ΠΈΡ†Π΅. УстановлСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ прочности Π±Π΅Ρ‚ΠΎΠ½Π½Ρ‹Ρ… смСсСй ΠΎΡ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ шлака. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π° экономико-матСматичСская модСль для опрСдСлСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ ΠΎΡ‚ ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ хвостов мСталлургичСского производства Π³ΠΎΡ€Π½ΠΎΠΉ отрасли с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ потСрянных ΠΏΡ€ΠΈ Π΄ΠΎΠ±Ρ‹Ρ‡Π΅ Ρ€ΡƒΠ΄. Показано, Ρ‡Ρ‚ΠΎ утилизация опасных ΠΏΡ€ΠΈ Ρ…Ρ€Π°Π½Π΅Π½ΠΈΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² позволяСт ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ комплСкс ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π³ΠΎΡ€Π½ΠΎΠ³ΠΎ производства. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ качСства Ρ€ΡƒΠ΄ ΠΏΡ€ΠΈ Π΄ΠΎΠ±Ρ‹Ρ‡Π΅ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ области примСнСния Ρ€Π΅ΡΡƒΡ€ΡΠΎΡΠ±Π΅Ρ€Π΅Π³Π°ΡŽΡ‰ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ с Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ пустот Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΠΌΠΈ смСсями достигаСтся использованиСм доступных ΠΈ Π΄Π΅ΡˆΠ΅Π²Ρ‹Ρ… хвостов тСхнологичСских процСссов Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… мСстороТдСний.Relevance and aim of the study. Improving the quality of metal ores in development of complex deposits by underground method is provided by the use of technology with the laying of the cavities hardening compounds, but the extension of the scope of technology development with the laying of the cavities hardening mixtures is limited by lack of binding cements. Reduction of deficit in binders as a means of improving the quality of extracted ores through the involvement of mineral waste in production is an urgent task of mining science and the aim of the research. Methods. Research methodology includes the analysis of efficiency of ore extraction through the use of anthropogenic resources in underground development of deposits of metal ores, activation of components of solid mixtures in a laboratory ball mill for differentiated parts of the backfill array and interpretation of the results. Results. The authors have proved the possibility of reducing the deficit in the goods by making the binder solid mixtures on the basis of the utilized slag. The paper introduces the results of studies of the activation parameters of the granulated blast furnace slag in ball mill. The authors determined the concrete mixture strength dependence on duration of slag activation and recommended the economicmathematical model to determine the amount of profit from the disposal of tailings the metallurgical mining industry, taking into account the lost in ore extraction. It is shown that the disposal of hazardous during storage of mineral waste allows solving a set of problems in mining industry. Conclusions. Improving the quality of ores in their extraction and extension of application area of resource-saving technologies of exploration with voids bookmark with hardening mixtures is achieved by using available and cheap tails of technological processes

    Reduction of deficit in binders for backfilling mixtures

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ ΠΈ Ρ†Π΅Π»ΡŒ исслСдования. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ качСства мСталличСских Ρ€ΡƒΠ΄ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ слоТноструктурных мСстороТдСний ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½Ρ‹ΠΌ способом обСспСчиваСтся использованиСм Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ с Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ пустот Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΠΌΠΈ смСсями, Π½ΠΎ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ области примСнСния Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ с Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ пустот Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΠΌΠΈ смСсями ограничиваСтся Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚ΠΎΠΌ вяТущих Ρ†Π΅ΠΌΠ΅Π½Ρ‚ΠΎΠ². Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° вяТущих ΠΊΠ°ΠΊ срСдство ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡ качСства Π΄ΠΎΠ±Ρ‹Π²Π°Π΅ΠΌΡ‹Ρ… Ρ€ΡƒΠ΄ ΠΏΡƒΡ‚Π΅ΠΌ вовлСчСния Π² производство ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² являСтся Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅ΠΉ Π³ΠΎΡ€Π½ΠΎΠΉ Π½Π°ΡƒΠΊΠΈ ΠΈ Ρ†Π΅Π»ΡŒΡŽ настоящСй ΡΡ‚Π°Ρ‚ΡŒΠΈ. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° исслСдования Π²ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ Π² сСбя Π°Π½Π°Π»ΠΈΠ· эффСктивности Π΄ΠΎΠ±Ρ‹Ρ‡ΠΈ Ρ€ΡƒΠ΄ Π·Π° счСт использования Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… рСсурсов ΠΏΡ€ΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΠΎΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ мСстороТдСний мСталличСских Ρ€ΡƒΠ΄, Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΡŽ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ² Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΡ… смСсСй Π² Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΡˆΠ°Ρ€ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Π»ΡŒΠ½ΠΈΡ†Π΅ Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎ для частСй Π·Π°ΠΊΠ»Π°Π΄ΠΎΡ‡Π½ΠΎΠ³ΠΎ массива ΠΈ ΠΈΠ½Ρ‚Π΅Ρ€ΠΏΡ€Π΅Ρ‚Π°Ρ†ΠΈΡŽ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ². Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Обоснована Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Π΄Π΅Ρ„ΠΈΡ†ΠΈΡ‚Π° Ρ‚ΠΎΠ²Π°Ρ€Π½Ρ‹Ρ… вяТущих ΠΏΡƒΡ‚Π΅ΠΌ изготовлСния Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΡ… смСсСй Π½Π° основС ΡƒΡ‚ΠΈΠ»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌΡ‹Ρ… мСталлургичСских шлаков. Π”Π°Π½Ρ‹ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдований ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ Π³Ρ€Π°Π½ΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ шлака Π² ΡˆΠ°Ρ€ΠΎΠ²ΠΎΠΉ ΠΌΠ΅Π»ΡŒΠ½ΠΈΡ†Π΅. УстановлСна Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡ‚ΡŒ прочности Π±Π΅Ρ‚ΠΎΠ½Π½Ρ‹Ρ… смСсСй ΠΎΡ‚ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ Π°ΠΊΡ‚ΠΈΠ²Π°Ρ†ΠΈΠΈ шлака. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π° экономико-матСматичСская модСль для опрСдСлСния Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΏΡ€ΠΈΠ±Ρ‹Π»ΠΈ ΠΎΡ‚ ΡƒΡ‚ΠΈΠ»ΠΈΠ·Π°Ρ†ΠΈΠΈ хвостов мСталлургичСского производства Π³ΠΎΡ€Π½ΠΎΠΉ отрасли с ΡƒΡ‡Π΅Ρ‚ΠΎΠΌ потСрянных ΠΏΡ€ΠΈ Π΄ΠΎΠ±Ρ‹Ρ‡Π΅ Ρ€ΡƒΠ΄. Показано, Ρ‡Ρ‚ΠΎ утилизация опасных ΠΏΡ€ΠΈ Ρ…Ρ€Π°Π½Π΅Π½ΠΈΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ…ΠΎΠ΄ΠΎΠ² позволяСт ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎ Ρ€Π΅ΡˆΠ°Ρ‚ΡŒ комплСкс ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌ Π³ΠΎΡ€Π½ΠΎΠ³ΠΎ производства. Π’Ρ‹Π²ΠΎΠ΄Ρ‹. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ качСства Ρ€ΡƒΠ΄ ΠΏΡ€ΠΈ Π΄ΠΎΠ±Ρ‹Ρ‡Π΅ ΠΈ Ρ€Π°ΡΡˆΠΈΡ€Π΅Π½ΠΈΠ΅ области примСнСния Ρ€Π΅ΡΡƒΡ€ΡΠΎΡΠ±Π΅Ρ€Π΅Π³Π°ΡŽΡ‰ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ с Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ пустот Ρ‚Π²Π΅Ρ€Π΄Π΅ΡŽΡ‰ΠΈΠΌΠΈ смСсями достигаСтся использованиСм доступных ΠΈ Π΄Π΅ΡˆΠ΅Π²Ρ‹Ρ… хвостов тСхнологичСских процСссов Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½Ρ‹Ρ… мСстороТдСний.Relevance and aim of the study. Improving the quality of metal ores in development of complex deposits by underground method is provided by the use of technology with the laying of the cavities hardening compounds, but the extension of the scope of technology development with the laying of the cavities hardening mixtures is limited by lack of binding cements. Reduction of deficit in binders as a means of improving the quality of extracted ores through the involvement of mineral waste in production is an urgent task of mining science and the aim of the research. Methods. Research methodology includes the analysis of efficiency of ore extraction through the use of anthropogenic resources in underground development of deposits of metal ores, activation of components of solid mixtures in a laboratory ball mill for differentiated parts of the backfill array and interpretation of the results. Results. The authors have proved the possibility of reducing the deficit in the goods by making the binder solid mixtures on the basis of the utilized slag. The paper introduces the results of studies of the activation parameters of the granulated blast furnace slag in ball mill. The authors determined the concrete mixture strength dependence on duration of slag activation and recommended the economicmathematical model to determine the amount of profit from the disposal of tailings the metallurgical mining industry, taking into account the lost in ore extraction. It is shown that the disposal of hazardous during storage of mineral waste allows solving a set of problems in mining industry. Conclusions. Improving the quality of ores in their extraction and extension of application area of resource-saving technologies of exploration with voids bookmark with hardening mixtures is achieved by using available and cheap tails of technological processes
    corecore