13 research outputs found
Π¦ΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ²ΡΠΉ ΠΏΡΠΎΡΠΈΠ»Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΊΠ°ΡΠ΄ΠΈΠΎ- ΠΈ ΠΎΡΡΠ°Π»ΡΠΌΠΎΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ
Π‘ΠΎΡΠ΅ΡΠ°Π½Π½Π°Ρ ΠΊΠ°ΡΠ΄ΠΈΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΈ ΠΎΡΡΠ°Π»ΡΠΌΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈΠΌΠ΅Π΅Ρ Π²ΡΡΠΎΠΊΡΡ ΡΠ°ΡΠΏΡΠΎΡΡΡΠ°Π½ΡΠ½Π½ΠΎΡΡΡ Π² ΡΡΠ°ΡΡΠΈΡ
Π²ΠΎΠ·ΡΠ°ΡΡΠ½ΡΡ
Π³ΡΡΠΏΠΏΠ°Ρ
Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΈ ΠΎΠ±ΡΠΈΠ΅ ΠΏΠ°ΡΠΎΠ³Π΅Π½Π΅ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΌΠ΅Ρ
Π°Π½ΠΈΠ·ΠΌΡ, ΠΊ ΡΠΈΡΠ»Ρ ΠΊΠΎΡΠΎΡΡΡ
, Π±Π΅Π·ΡΡΠ»ΠΎΠ²Π½ΠΎ, ΠΎΡΠ½ΠΎΡΠΈΡΡΡ Π½Π°ΡΡΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ. ΠΠ΄Π½Π°ΠΊΠΎ ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ²ΡΠΉ ΠΏΡΠΎΡΠΈΠ»Ρ ΠΊΡΠΎΠ²ΠΈ ΠΏΡΠ°ΠΊΡΠΈΡΠ΅ΡΠΊΠΈ Π½Π΅ Π°Π½Π°Π»ΠΈΠ·ΠΈΡΠΎΠ²Π°Π»ΡΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΠΏΠΎΠΆΠΈΠ»ΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ° Ρ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ° Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ. Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ β ΠΈΠ·ΡΡΠ΅Π½ΠΈΠ΅ ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ²ΠΎΠ³ΠΎ ΠΏΡΠΎΡΠΈΠ»Ρ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΊΠ°ΡΠ΄ΠΈΠΎ- ΠΈ ΠΎΡΡΠ°Π»ΡΠΌΠΎΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ Π²ΡΠΏΠΎΠ»Π½Π΅Π½ΠΎ Π² Π’Π°ΠΌΠ±ΠΎΠ²ΡΠΊΠΎΠΌ ΡΠΈΠ»ΠΈΠ°Π»Π΅ ΠΠΠ’Π Β«ΠΠΈΠΊΡΠΎΡ
ΠΈΡΡΡΠ³ΠΈΡ Π³Π»Π°Π·Π° ΠΈΠΌΠ΅Π½ΠΈ Π°ΠΊΠ°Π΄Π΅ΠΌΠΈΠΊΠ° Π‘.Π. Π€Π΅Π΄ΠΎΡΠΎΠ²Π°Β» Π² Π΄Π²ΡΡ
Π³ΡΡΠΏΠΏΠ°Ρ
: ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Ρ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ° Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ (n=58 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ) ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΡ Ρ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ° (n=49 ΡΠ΅Π»ΠΎΠ²Π΅ΠΊ), ΠΈΠΌΠ΅ΡΡΠΈΡ
Π² ΠΎΠ±ΠΎΠΈΡ
ΡΠ»ΡΡΠ°ΡΡ
ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΠΉ Π²ΠΎΠ·ΡΠ°ΡΡ 60-74 Π»Π΅Ρ. ΠΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° Π³Π»Π°ΡΠΊΠΎΠΌΡ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½Π° Π² ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²ΠΈΠΈ Ρ ΠΊΡΠΈΡΠ΅ΡΠΈΡΠΌΠΈ Β«ΠΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠΊΠΎΠ²ΠΎΠ΄ΡΡΠ²Π° ΠΏΠΎ Π³Π»Π°ΡΠΊΠΎΠΌΠ΅Β». ΠΠ»Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΡΠ΅ΡΠ΄ΡΠ° Π²ΡΠΏΠΎΠ»Π½ΡΠ»ΠΈΡΡ ΡΠ»Π΅ΠΊΡΡΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΡΡ
ΠΎΠΊΠ°ΡΠ΄ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΡΠ΅Π½ΡΠ³Π΅Π½ΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΡΠ½Π·ΠΈΠΌΠ½ΡΠ΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ² Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΠΏΡΠΎΠ²ΠΎΠ΄ΠΈΠ»ΠΎΡΡ Π½Π° Π°ΠΏΠΏΠ°ΡΠ°ΡΠ΅ Β«Beckton Dickinson FACS Canto 2 (USA)Β» Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠ΅ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π½Π°Π±ΠΎΡΠ° CBA (BD Biosciences, USA). Π‘ΡΠ΅Π΄ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² ΡΡΠ°Π²Π½ΠΈΠ²Π°Π΅ΠΌΡΡ
Π³ΡΡΠΏΠΏ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΠΎΠ³ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ° Π²ΡΡΠ²Π»Π΅Π½Ρ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠ΅ ΡΠ°Π·Π»ΠΈΡΠΈΡ ΠΏΠΎ Π±ΠΎΠ»ΡΡΠΈΠ½ΡΡΠ²Ρ ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ², Π° ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎΠ΅ ΠΏΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΊΠ°ΡΠ΄ΠΈΠΎ- ΠΈ ΠΎΡΡΠ°Π»ΡΠΌΠΎΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π³ΡΡΠΏΠΏΡ Ρ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ°. ΠΠΎΠ²ΡΡΠΈΠ»ΠΎΡΡ Π² ΠΏΠ»Π°Π·ΠΌΠ΅ ΠΊΡΠΎΠ²ΠΈ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ°, ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ, ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ IL-5, IL-12, IFN-Ξ³, TNF-Ξ± c Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΡΠΌ ΡΠ°Π·Π»ΠΈΡΠΈΠ΅ΠΌ ΠΏΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ°ΠΌΠΈ Ρ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ°. ΠΠ΄Π½Π°ΠΊΠΎ Π½Π°ΠΈΠ²ΡΡΡΠ΅Π΅ ΡΠ²Π΅Π»ΠΈΡΠ΅Π½ΠΈΠ΅ ΡΡΠ΅Π΄ΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°Π΅ΠΌΡΡ
ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ² Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΠΎ Π΄Π»Ρ IL-6 ΠΈ IL-17, ΡΠΎΡΡΠ°Π²ΠΈΠ²ΡΠ΅Π΅ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΊΠ°ΡΠ΄ΠΈΠΎ- ΠΈ ΠΎΡΡΠ°Π»ΡΠΌΠΎΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΠ΅ΠΉ 23,8Β±1,1 ΠΏΠ³/ΠΌΠ» ΠΈ 20,2Β±1,7 ΠΏΠ³/ΠΌΠ» ΠΏΡΠΎΡΠΈΠ² 6,3Β±0,3 ΠΏΠ³/ΠΌΠ» ΠΈ 7,9Β±0,5 ΠΏΠ³/ΠΌΠ» ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ Ρ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ°. ΠΠΌΠ΅ΡΡΠ΅ Ρ ΡΠ΅ΠΌ ΡΡΡΠ΅ΡΡΠ²Π΅Π½Π½ΠΎ ΡΠ½ΠΈΠ·ΠΈΠ»ΡΡ ΡΡΠΎΠ²Π΅Π½Ρ IL-4 ΠΈ IL-10 Π΄ΠΎ 2,2Β±0,2 ΠΏΠ³/ΠΌΠ» ΠΈ 6,4Β±0,4 ΠΏΠ³/ΠΌΠ» ΠΏΡΠΎΡΠΈΠ² 4,8Β±0,3 ΠΏΠ³/ΠΌΠ» ΠΈ 11,9Β±0,6 ΠΏΠ³/ΠΌΠ». ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π»ΠΎΠ³ΠΈΡΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΠ΅Π³ΡΠ΅ΡΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠΊΠ° ΠΈΠ·ΡΡΠ΅Π½Π½ΡΡ
ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ² ΠΊΡΠΎΠ²ΠΈ ΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°ΡΡ Π½Π΅ΡΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΈ ΡΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΡΠ΅ ΠΌΠΎΠ΄Π΅Π»ΠΈ, ΡΠΎΠ³Π»Π°ΡΠ½ΠΎ ΠΊΠΎΡΠΎΡΡΠΌ Π½Π°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΡΠ΅ΡΠ½Π°Ρ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΡ Ρ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΠΈ ΡΠ΅ΡΠ΄ΡΠ° Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ ΡΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π΄Π»Ρ IL-6 ΠΈ IL-17, Ρ Π²Π΅Π»ΠΈΡΠΈΠ½Π°ΠΌΠΈ ΠΎΡΠ½ΠΎΡΠΈΡΠ΅Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠΊΠ° Π² Π½Π΅ΡΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ 2,87 ΠΈ 2,71 ΡΠΎΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎ (p<0,001). ΠΠ΄Π½Π°ΠΊΠΎ Π² ΡΠΊΠΎΡΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΡ IL-6 Ρ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ° Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ ΠΏΠΎΠ²ΡΡΠΈΠ»Π°ΡΡ Π΄ΠΎ 2,92 (ΠΠ 2,80-3,27, Ρ=0,004), Π° IL-17 ΡΠΌΠ΅Π½ΡΡΠΈΠ»ΠΎΡΡ Π΄ΠΎ 2,64 (ΠΠ 2,51-2,85, Ρ=0,003). Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° ΡΠ°ΠΊΠΆΠ΅ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½Π°Ρ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΡ IL-4, IL-5, IL-12, IFN-Ξ³ ΠΈ TNF-Ξ± Ρ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ° Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΡΠΎΠ΄Π΅ΠΌΠΎΠ½ΡΡΡΠΈΡΠΎΠ²Π°Π»ΠΎ Π½ΠΎΠ²ΡΠ΅ Π°ΡΡΠΎΡΠΈΠ°ΡΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΠ½ΡΡ
ΡΠΈΡΠΎΠΊΠΈΠ½ΠΎΠ² Ρ ΡΠΈΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΡΠΎΡΠ΅ΡΠ°Π½Π½ΠΎΠΉ ΠΈΡΠ΅ΠΌΠΈΡΠ΅ΡΠΊΠΎΠΉ Π±ΠΎΠ»Π΅Π·Π½ΡΡ ΡΠ΅ΡΠ΄ΡΠ° Ρ Π³Π»Π°ΡΠΊΠΎΠΌΠΎΠΉ
Nonlinear Problems of Equilibrium Charge State Transport in Hot Plasmas
The general coupling between particle transport and ionization-recombination processes in hot plasma is considered on the key concept of equilibrium charge state (CS) transport. A theoretical interpretation of particle and CS transport is gained in terms of a two-dimensional (2D) Markovian stochastic (random) processes, a discrete 2D Fokker-Plank-Kolmogorov equation (in charge and space variables) and generalized 2D coronal equilibrium between atomic processes and particle transport. The basic tool for analysis of CS equilibrium and transport is the equilibrium cell (EC) (two states on charge and two on space), which presents simultaneously a unit phase volume, the characteristic scales (in space and time) of local equilibrium, and a comprehensive solution for the simplest nonlinear relations between transport and atomic processes. The space-time relationships between the equilibrium constant, transport rates, density distributions, and impurity confinement time are found. The subsequent direct calculation of the total and partial density profiles and the transport coefficients of argon impurity showed a strong dependence of the 2D CS equilibrium and transport on the atomic structure of ions. A model for recovering the recombination rate profiles of carbon impurity was developed basing on the CS equilibrium conditions, the derived relationships, the data about density profiles, plasma parameters and ionization rates
Hydrogen Spectral Line Shape Formation in the SOL of Fusion Reactor Plasmas
The problems related to the spectral line-shape formation in the scrape of layer (SOL) in fusion reactor plasma for typical observation chords are considered. The SOL plasma is characterized by the relatively low electron density (1012β1013 cmβ3) and high temperature (from 10 eV up to 1 keV). The main effects responsible for the line-shape formation in the SOL are Doppler and Zeeman effects. The main problem is a correct modeling of the neutral atom velocity distribution function (VDF). The VDF is determined by a number of atomic processes, namely: molecular dissociation, ionization and charge exchange of neutral atoms on plasma ions, electron excitation accompanied by the charge exchange from atomic excited states, and atom reflection from the wall. All the processes take place step by step during atom motion from the wall to the plasma core. In practice, the largest contribution to the neutral atom radiation emission comes from a thin layer near the wall with typical size 10β20 cm, which is small as compared with the minor radius of modern devices including international test experimental reactor ITER (radius 2 m). The important problem is a strongly non-uniform distribution of plasma parameters (electron and ion densities and temperatures). The distributions vary for different observation chords and ITER operation regimes. In the present report, most attention is paid to the problem of the VDF calculations. The most correct method for solving the problem is an application of the Monte Carlo method for atom motion near the wall. However, the method is sometimes too complicated to be combined with other numerical codes for plasma modeling for various regimes of fusion reactor operation. Thus, it is important to develop simpler methods for neutral atom VDF in space coordinates and velocities. The efficiency of such methods has to be tested via a comparison with the Monte Carlo codes for particular plasma conditions. Here a new simplified method for description of neutral atoms penetration into plasma is suggested. The method is based on the ballistic motion of neutrals along the line-of-sight (LoS) in the forwardβback approximation. As a result, two-dimensional distribution functions, dependent on the LoS coordinate and the velocity projection on the LoS, and responsible for the Doppler broadening of the line shape, are calculated. A comparison of the method with Monte Carlo calculations allows the evaluation of the accuracy of the ballistic model. The Balmer spectral line shapes are calculated for specific LoS typical for ITER diagnostic
Tungsten Ions in Plasmas: Statistical Theory of Radiative-Collisional Processes
The statistical model for calculations of the collisional-radiative processes in plasmas with tungsten impurity was developed. The electron structure of tungsten multielectron ions is considered in terms of both the Thomas-Fermi model and the Brandt-Lundquist model of collective oscillations of atomic electron density. The excitation or ionization of atomic electrons by plasma electron impacts are represented as photo-processes under the action of flux of equivalent photons introduced by E. Fermi. The total electron impact single ionization cross-sections of ions Wk+ with respective rates have been calculated and compared with the available experimental and modeling data (e.g., CADW). Plasma radiative losses on tungsten impurity were also calculated in a wide range of electron temperatures 1 eVβ20 keV. The numerical code TFATOM was developed for calculations of radiative-collisional processes involving tungsten ions. The needed computational resources for TFATOM code are orders of magnitudes less than for the other conventional numerical codes. The transition from corona to Boltzmann limit was investigated in detail. The results of statistical approach have been tested by comparison with the vast experimental and conventional code data for a set of ions Wk+. It is shown that the universal statistical model accuracy for the ionization cross-sections and radiation losses is within the data scattering of significantly more complex quantum numerical codes, using different approximations for the calculation of atomic structure and the electronic cross-sections
New approach to development and manufacturing technologies of duplex steel
We conducted a brief review of current production and application of duplex and super duplex steels for manufacture of equipment exposed to the hazard of sulphide stress-corrosion cracking, sea water and other corrosive environment. The super duplex steel with enhanced corrosion-mechanical characteristics in comparison with the known steels of austenitic-ferritic class was developed. Based on the concepts of formation of a special structure of two-phase austenitic-ferritic steels in the process of crystallization, the possibilities of compositional, technological, thermal and special impact techniques are considered and advanced ways of controlling physical, chemical, structural homogeneity and properties of super duplex steels are developed. Electroslag remelting with the application of low-frequency alternating current provides effective control over the length of the two-phase area, the size of the primary dendrites of the austenitic and ferritic phases, the average distance between their axes, the parameters of the crystallizing cell, the development of liquation phenomena and the size of the growing non-metallic phases. Within framework of the proposed approach, the thermodynamic and kinetic conditions for the formation and growth of hardening phases are assessed, a new composition and a complex technology for the manufacture of corrosion-resistant super duplex steels for gas and oil production equipment has been developed. Thermodynamically stable, having sizes of 30-300 nm, niobium nitrides and carbonitrides are located inside the grains of the ferritic phase. At the same time, the sigma phase and chromium carbide precipitates at the intergrain boundaries are not observed. The results of the determination of mechanical and corrosion properties in accordance with the NACE TM 0177 standard (method A), tests of corrosion witness-samples in field conditions demonstrate the advantages and prospects of using new super duplex steel for the manufacture of oil and gas production equipment operating in an environment with high H2S content and CO2 under significant mechanical loads, without the risk of brittle fracture
New generation of super duplex steels for equipment gas and oil production
Oil&gas producing industry today is increased production volumes from old deposits on land, offshore and deep-water. The materials used to create modern equipment that meets these trends should be distinguished by increased productivity in conditions of corrosion and high pressure, to ensure trouble-free operation. In such conditions, taking into account the necessary provision of acceptable cost indicators, there is no alternative to duplex steels. Their crystal structure simultaneously allows using the advantages of ferritic and austenitic phases. The report presents the results of using a compositional and technological methods for structure management, the rationale alloying with copper (3.0-3.3%). Application of ESR in the manufacture of steel billets of super duplex steel has demonstrated the ability to simultaneously achieve physical, chemical and structural homogeneity, ensuring high corrosion&mechanical characteristics. The thermodynamic and kinetic conditions for the formation of optimal phase steel composition are determined. Grounded heat treatment regimes, prevent the formation of sigma and psi-phase and contribute to the formation of stable intermetallides (30-300 nm). Based on the test results of βGazprom-VNIIGAZβ LLC the new steel is recommended for the manufacture of valve bodies and in-vessel internals used in the fields, that containing H2S and CO2 up to 25% in the fluid
Reduction of deficit in binders for backfilling mixtures
Relevance and aim of the study. Improving the quality of metal ores in development of complex deposits by underground method is provided by the use of technology with the laying of the cavities hardening compounds, but the extension of the scope of technology development with the laying of the cavities hardening mixtures is limited by lack of binding cements. Reduction of deficit in binders as a means of improving the quality of extracted ores through the involvement of mineral waste in production is an urgent task of mining science and the aim of the research. Methods. Research methodology includes the analysis of efficiency of ore extraction through the use of anthropogenic resources in underground development of deposits of metal ores, activation of components of solid mixtures in a laboratory ball mill for differentiated parts of the backfill array and interpretation of the results. Results. The authors have proved the possibility of reducing the deficit in the goods by making the binder solid mixtures on the basis of the utilized slag. The paper introduces the results of studies of the activation parameters of the granulated blast furnace slag in ball mill. The authors determined the concrete mixture strength dependence on duration of slag activation and recommended the economicmathematical model to determine the amount of profit from the disposal of tailings the metallurgical mining industry, taking into account the lost in ore extraction. It is shown that the disposal of hazardous during storage of mineral waste allows solving a set of problems in mining industry. Conclusions. Improving the quality of ores in their extraction and extension of application area of resource-saving technologies of exploration with voids bookmark with hardening mixtures is achieved by using available and cheap tails of technological processes
Reduction of deficit in binders for backfilling mixtures
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈ ΡΠ΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ΄ ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Ρ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ ΠΏΡΡΡΠΎΡ ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΠΌΠΈ ΡΠΌΠ΅ΡΡΠΌΠΈ, Π½ΠΎ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Ρ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ ΠΏΡΡΡΠΎΡ ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΠΌΠΈ ΡΠΌΠ΅ΡΡΠΌΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π΄Π΅ΡΠΈΡΠΈΡΠΎΠΌ Π²ΡΠΆΡΡΠΈΡ
ΡΠ΅ΠΌΠ΅Π½ΡΠΎΠ². Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅ΡΠΈΡΠΈΡΠ° Π²ΡΠΆΡΡΠΈΡ
ΠΊΠ°ΠΊ ΡΡΠ΅Π΄ΡΡΠ²ΠΎ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° Π΄ΠΎΠ±ΡΠ²Π°Π΅ΠΌΡΡ
ΡΡΠ΄ ΠΏΡΡΠ΅ΠΌ Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ Π³ΠΎΡΠ½ΠΎΠΉ Π½Π°ΡΠΊΠΈ ΠΈ ΡΠ΅Π»ΡΡ Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π² ΡΠ΅Π±Ρ Π°Π½Π°Π»ΠΈΠ· ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄ΠΎΠ±ΡΡΠΈ ΡΡΠ΄ Π·Π° ΡΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠ΅ΡΡΡΡΠΎΠ² ΠΏΡΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΠΎΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ΄, Π°ΠΊΡΠΈΠ²Π°ΡΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΡ
ΡΠΌΠ΅ΡΠ΅ΠΉ Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΠΌΠ΅Π»ΡΠ½ΠΈΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΠΉ Π·Π°ΠΊΠ»Π°Π΄ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠ²Π° ΠΈ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ Π΄Π΅ΡΠΈΡΠΈΡΠ° ΡΠΎΠ²Π°ΡΠ½ΡΡ
Π²ΡΠΆΡΡΠΈΡ
ΠΏΡΡΠ΅ΠΌ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΡ
ΡΠΌΠ΅ΡΠ΅ΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠΈΠ»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
ΠΌΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π°ΠΊΠΎΠ². ΠΠ°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ Π³ΡΠ°Π½ΡΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ»Π°ΠΊΠ° Π² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΠΌΠ΅Π»ΡΠ½ΠΈΡΠ΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΡΠ½ΠΎΡΡΠΈ Π±Π΅ΡΠΎΠ½Π½ΡΡ
ΡΠΌΠ΅ΡΠ΅ΠΉ ΠΎΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΡΠ»Π°ΠΊΠ°. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΎ-ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΏΡΠΈΠ±ΡΠ»ΠΈ ΠΎΡ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ Ρ
Π²ΠΎΡΡΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° Π³ΠΎΡΠ½ΠΎΠΉ ΠΎΡΡΠ°ΡΠ»ΠΈ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΏΠΎΡΠ΅ΡΡΠ½Π½ΡΡ
ΠΏΡΠΈ Π΄ΠΎΠ±ΡΡΠ΅ ΡΡΠ΄. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ ΠΎΠΏΠ°ΡΠ½ΡΡ
ΠΏΡΠΈ Ρ
ΡΠ°Π½Π΅Π½ΠΈΠΈ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΡΠ΅ΡΠ°ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π³ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°. ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΡΠ΄ ΠΏΡΠΈ Π΄ΠΎΠ±ΡΡΠ΅ ΠΈ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΡΡΡΠΎΡΠ±Π΅ΡΠ΅Π³Π°ΡΡΠΈΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Ρ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ ΠΏΡΡΡΠΎΡ ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΠΌΠΈ ΡΠΌΠ΅ΡΡΠΌΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄ΠΎΡΡΡΠΏΠ½ΡΡ
ΠΈ Π΄Π΅ΡΠ΅Π²ΡΡ
Ρ
Π²ΠΎΡΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ.Relevance and aim of the study. Improving the quality of metal ores in development of complex deposits by underground method is provided by the use of technology with the laying of the cavities hardening compounds, but the extension of the scope of technology development with the laying of the cavities hardening mixtures is limited by lack of binding cements. Reduction of deficit in binders as a means of improving the quality of extracted ores through the involvement of mineral waste in production is an urgent task of mining science and the aim of the research. Methods. Research methodology includes the analysis of efficiency of ore extraction through the use of anthropogenic resources in underground development of deposits of metal ores, activation of components of solid mixtures in a laboratory ball mill for differentiated parts of the backfill array and interpretation of the results. Results. The authors have proved the possibility of reducing the deficit in the goods by making the binder solid mixtures on the basis of the utilized slag. The paper introduces the results of studies of the activation parameters of the granulated blast furnace slag in ball mill. The authors determined the concrete mixture strength dependence on duration of slag activation and recommended the economicmathematical model to determine the amount of profit from the disposal of tailings the metallurgical mining industry, taking into account the lost in ore extraction. It is shown that the disposal of hazardous during storage of mineral waste allows solving a set of problems in mining industry. Conclusions. Improving the quality of ores in their extraction and extension of application area of resource-saving technologies of exploration with voids bookmark with hardening mixtures is achieved by using available and cheap tails of technological processes
Reduction of deficit in binders for backfilling mixtures
ΠΠΊΡΡΠ°Π»ΡΠ½ΠΎΡΡΡ ΠΈ ΡΠ΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ΄ ΠΏΡΠΈ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡΡΡΠΊΡΡΡΠ½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΡΠΌ ΡΠΏΠΎΡΠΎΠ±ΠΎΠΌ ΠΎΠ±Π΅ΡΠΏΠ΅ΡΠΈΠ²Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ Ρ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ ΠΏΡΡΡΠΎΡ ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΠΌΠΈ ΡΠΌΠ΅ΡΡΠΌΠΈ, Π½ΠΎ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Ρ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ ΠΏΡΡΡΠΎΡ ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΠΌΠΈ ΡΠΌΠ΅ΡΡΠΌΠΈ ΠΎΠ³ΡΠ°Π½ΠΈΡΠΈΠ²Π°Π΅ΡΡΡ Π΄Π΅ΡΠΈΡΠΈΡΠΎΠΌ Π²ΡΠΆΡΡΠΈΡ
ΡΠ΅ΠΌΠ΅Π½ΡΠΎΠ². Π‘Π½ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π΄Π΅ΡΠΈΡΠΈΡΠ° Π²ΡΠΆΡΡΠΈΡ
ΠΊΠ°ΠΊ ΡΡΠ΅Π΄ΡΡΠ²ΠΎ ΡΠ»ΡΡΡΠ΅Π½ΠΈΡ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° Π΄ΠΎΠ±ΡΠ²Π°Π΅ΠΌΡΡ
ΡΡΠ΄ ΠΏΡΡΠ΅ΠΌ Π²ΠΎΠ²Π»Π΅ΡΠ΅Π½ΠΈΡ Π² ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²ΠΎ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΡΠ²Π»ΡΠ΅ΡΡΡ Π°ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠΉ Π·Π°Π΄Π°ΡΠ΅ΠΉ Π³ΠΎΡΠ½ΠΎΠΉ Π½Π°ΡΠΊΠΈ ΠΈ ΡΠ΅Π»ΡΡ Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΡΠ°ΡΡΠΈ. ΠΠ΅ΡΠΎΠ΄Ρ. ΠΠ΅ΡΠΎΠ΄ΠΈΠΊΠ° ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π²ΠΊΠ»ΡΡΠ°Π΅Ρ Π² ΡΠ΅Π±Ρ Π°Π½Π°Π»ΠΈΠ· ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½ΠΎΡΡΠΈ Π΄ΠΎΠ±ΡΡΠΈ ΡΡΠ΄ Π·Π° ΡΡΠ΅Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΡΠ΅ΡΡΡΡΠΎΠ² ΠΏΡΠΈ ΠΏΠΎΠ΄Π·Π΅ΠΌΠ½ΠΎΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ ΠΌΠ΅ΡΠ°Π»Π»ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΡΠ΄, Π°ΠΊΡΠΈΠ²Π°ΡΠΈΡ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΠΎΠ² ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΡ
ΡΠΌΠ΅ΡΠ΅ΠΉ Π² Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΠΎΠΉ ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΠΌΠ΅Π»ΡΠ½ΠΈΡΠ΅ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎ Π΄Π»Ρ ΡΠ°ΡΡΠ΅ΠΉ Π·Π°ΠΊΠ»Π°Π΄ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΌΠ°ΡΡΠΈΠ²Π° ΠΈ ΠΈΠ½ΡΠ΅ΡΠΏΡΠ΅ΡΠ°ΡΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π½ΡΡ
ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ². Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. ΠΠ±ΠΎΡΠ½ΠΎΠ²Π°Π½Π° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ Π΄Π΅ΡΠΈΡΠΈΡΠ° ΡΠΎΠ²Π°ΡΠ½ΡΡ
Π²ΡΠΆΡΡΠΈΡ
ΠΏΡΡΠ΅ΠΌ ΠΈΠ·Π³ΠΎΡΠΎΠ²Π»Π΅Π½ΠΈΡ ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΡ
ΡΠΌΠ΅ΡΠ΅ΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΡΡΠΈΠ»ΠΈΠ·ΠΈΡΡΠ΅ΠΌΡΡ
ΠΌΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠ»Π°ΠΊΠΎΠ². ΠΠ°Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ Π³ΡΠ°Π½ΡΠ»ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ Π΄ΠΎΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ»Π°ΠΊΠ° Π² ΡΠ°ΡΠΎΠ²ΠΎΠΉ ΠΌΠ΅Π»ΡΠ½ΠΈΡΠ΅. Π£ΡΡΠ°Π½ΠΎΠ²Π»Π΅Π½Π° Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΠΏΡΠΎΡΠ½ΠΎΡΡΠΈ Π±Π΅ΡΠΎΠ½Π½ΡΡ
ΡΠΌΠ΅ΡΠ΅ΠΉ ΠΎΡ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΡΡΠΈ Π°ΠΊΡΠΈΠ²Π°ΡΠΈΠΈ ΡΠ»Π°ΠΊΠ°. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½Π° ΡΠΊΠΎΠ½ΠΎΠΌΠΈΠΊΠΎ-ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π΄Π»Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ Π²Π΅Π»ΠΈΡΠΈΠ½Ρ ΠΏΡΠΈΠ±ΡΠ»ΠΈ ΠΎΡ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΠΈ Ρ
Π²ΠΎΡΡΠΎΠ² ΠΌΠ΅ΡΠ°Π»Π»ΡΡΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π° Π³ΠΎΡΠ½ΠΎΠΉ ΠΎΡΡΠ°ΡΠ»ΠΈ Ρ ΡΡΠ΅ΡΠΎΠΌ ΠΏΠΎΡΠ΅ΡΡΠ½Π½ΡΡ
ΠΏΡΠΈ Π΄ΠΎΠ±ΡΡΠ΅ ΡΡΠ΄. ΠΠΎΠΊΠ°Π·Π°Π½ΠΎ, ΡΡΠΎ ΡΡΠΈΠ»ΠΈΠ·Π°ΡΠΈΡ ΠΎΠΏΠ°ΡΠ½ΡΡ
ΠΏΡΠΈ Ρ
ΡΠ°Π½Π΅Π½ΠΈΠΈ ΠΌΠΈΠ½Π΅ΡΠ°Π»ΡΠ½ΡΡ
ΠΎΡΡ
ΠΎΠ΄ΠΎΠ² ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΡΠ΅ΡΠ°ΡΡ ΠΊΠΎΠΌΠΏΠ»Π΅ΠΊΡ ΠΏΡΠΎΠ±Π»Π΅ΠΌ Π³ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ΄ΡΡΠ²Π°. ΠΡΠ²ΠΎΠ΄Ρ. ΠΠΎΠ²ΡΡΠ΅Π½ΠΈΠ΅ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΡΡΠ΄ ΠΏΡΠΈ Π΄ΠΎΠ±ΡΡΠ΅ ΠΈ ΡΠ°ΡΡΠΈΡΠ΅Π½ΠΈΠ΅ ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΡΠ΅ΡΡΡΡΠΎΡΠ±Π΅ΡΠ΅Π³Π°ΡΡΠΈΡ
ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠΊΠΈ Ρ Π·Π°ΠΊΠ»Π°Π΄ΠΊΠΎΠΉ ΠΏΡΡΡΠΎΡ ΡΠ²Π΅ΡΠ΄Π΅ΡΡΠΈΠΌΠΈ ΡΠΌΠ΅ΡΡΠΌΠΈ Π΄ΠΎΡΡΠΈΠ³Π°Π΅ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π΄ΠΎΡΡΡΠΏΠ½ΡΡ
ΠΈ Π΄Π΅ΡΠ΅Π²ΡΡ
Ρ
Π²ΠΎΡΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΡ
ΠΏΡΠΎΡΠ΅ΡΡΠΎΠ² ΡΠ΅Ρ
Π½ΠΎΠ³Π΅Π½Π½ΡΡ
ΠΌΠ΅ΡΡΠΎΡΠΎΠΆΠ΄Π΅Π½ΠΈΠΉ.Relevance and aim of the study. Improving the quality of metal ores in development of complex deposits by underground method is provided by the use of technology with the laying of the cavities hardening compounds, but the extension of the scope of technology development with the laying of the cavities hardening mixtures is limited by lack of binding cements. Reduction of deficit in binders as a means of improving the quality of extracted ores through the involvement of mineral waste in production is an urgent task of mining science and the aim of the research. Methods. Research methodology includes the analysis of efficiency of ore extraction through the use of anthropogenic resources in underground development of deposits of metal ores, activation of components of solid mixtures in a laboratory ball mill for differentiated parts of the backfill array and interpretation of the results. Results. The authors have proved the possibility of reducing the deficit in the goods by making the binder solid mixtures on the basis of the utilized slag. The paper introduces the results of studies of the activation parameters of the granulated blast furnace slag in ball mill. The authors determined the concrete mixture strength dependence on duration of slag activation and recommended the economicmathematical model to determine the amount of profit from the disposal of tailings the metallurgical mining industry, taking into account the lost in ore extraction. It is shown that the disposal of hazardous during storage of mineral waste allows solving a set of problems in mining industry. Conclusions. Improving the quality of ores in their extraction and extension of application area of resource-saving technologies of exploration with voids bookmark with hardening mixtures is achieved by using available and cheap tails of technological processes