6 research outputs found

    Influence of the nanostructure on the surface and bulk physical properties of materials

    Get PDF
    Fullerenes, nanotubes, quantum dots have been considered as effective sensitizers to modify both the spectral, optical, nonlinear optical features, dynamic and polarization characteristics, as well as mechanical properties of the organic and inorganic materials. Laser, spectroscopy, mass-spectroscopy, nuclear magnetic resonance methods have been apply to support the change in the physical properties of the new nanocomposites. The extending of the nanocomposites applications area has been considered

    Influence of the Nanostructures on the Surface and Bulk Physical Properties of Materials

    Get PDF
    Fullerenes, nanotubes, quantum dots are considered as effective sensitizers to modify both the optical, nonlinear optical features, dynamic and polarization characteristics, as well as mechanical and spectral properties of the organic and inorganic materials. The correlation between photorefractivity and photoconductivity was supported and the relation between charge carrier mobility of pure conjugated structures and nanoobjects-doped ones has been revealed. An increase of transmission of nanostructured polarization films was observed. An extension of the nanocomposites applications area is considered

    Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications

    No full text
    Based on the model polyimide systems the principal nonlinear optical features, such as laser induced refractive indices changes, nonlinear refraction and third order susceptibility have been established during their doping with fullerenes, shungites, carbon nanotubes, carbon nanofibers, quantum dots, etc. The evidence of the correlation between laser induced refractive indices and charge carrier mobility has been obtained. The features of new nanocomposites for their possible optoelectronics, laser techniques and solar energy applications have been considered

    Influence of the Nanostructures on the Surface and Bulk Physical Properties of Materials

    No full text
    Fullerenes, nanotubes, quantum dots are considered as effective sensitizers to modify both the optical, nonlinear optical features, dynamic and polarization characteristics, as well as mechanical and spectral properties of the organic and inorganic materials. The correlation between photorefractivity and photoconductivity was supported and the relation between charge carrier mobility of pure conjugated structures and nanoobjects-doped ones has been revealed. An increase of transmission of nanostructured polarization films was observed. An extension of the nanocomposites applications area is considered
    corecore