181 research outputs found

    GridMM: Grid Memory Map for Vision-and-Language Navigation

    Full text link
    Vision-and-language navigation (VLN) enables the agent to navigate to a remote location following the natural language instruction in 3D environments. To represent the previously visited environment, most approaches for VLN implement memory using recurrent states, topological maps, or top-down semantic maps. In contrast to these approaches, we build the top-down egocentric and dynamically growing Grid Memory Map (i.e., GridMM) to structure the visited environment. From a global perspective, historical observations are projected into a unified grid map in a top-down view, which can better represent the spatial relations of the environment. From a local perspective, we further propose an instruction relevance aggregation method to capture fine-grained visual clues in each grid region. Extensive experiments are conducted on both the REVERIE, R2R, SOON datasets in the discrete environments, and the R2R-CE dataset in the continuous environments, showing the superiority of our proposed method

    Ten new species of the spider genus Althepus Thorell, 1898 from Southeast Asia (Araneae, Ochyroceratidae)

    Get PDF
    Spiders of the genus Althepus Thorell, 1898 are found throughout Southeast Asia, notable for their long walking legs. Ten new species are reported in this paper from China, Indonesia, Laos and Myanmar: A. chengmenensis Li & Li, sp. n. (♂♀), A. cheni Li & Li, sp. n. (♂♀), A. gouci Li & Li, sp. n. (♂♀), A. hongguangi Li & Li, sp. n. (♂♀), A. phousalao Li & Li, sp. n. (♂♀), A. qianhuang Li & Li, sp. n. (♂♀), A. qingyuani Li & Li, sp. n. (♀), A. sepakuensis Li & Li, sp. n. (♂♀), A. xuae Li & Li, sp. n. (♂♀) and A. yizhuang Li & Li, sp. n. (♂♀). These species were found in cave entrances and among tree-buttresses, indicating the spiders have a preference for dark and moist environments. All types are deposited in the Institute of Zoology, Chinese Academy of Sciences in Beijing, China (IZCAS)

    Generative artificial intelligence-enabled dynamic detection of nicotine-related circuits

    Full text link
    The identification of addiction-related circuits is critical for explaining addiction processes and developing addiction treatments. And models of functional addiction circuits developed from functional imaging are an effective tool for discovering and verifying addiction circuits. However, analyzing functional imaging data of addiction and detecting functional addiction circuits still have challenges. We have developed a data-driven and end-to-end generative artificial intelligence(AI) framework to address these difficulties. The framework integrates dynamic brain network modeling and novel network architecture networks architecture, including temporal graph Transformer and contrastive learning modules. A complete workflow is formed by our generative AI framework: the functional imaging data, from neurobiological experiments, and computational modeling, to end-to-end neural networks, is transformed into dynamic nicotine addiction-related circuits. It enables the detection of addiction-related brain circuits with dynamic properties and reveals the underlying mechanisms of addiction

    OR-034 The parvalbumin positive neuron involved the regulation of motor cortex excitability in the exercise-induced fatigue

    Get PDF
    Objective Objective:Cortical parvalbumin-expressing inhibitory neurons(PV) control the activity of excitatory neurons and regulate their spike output. The present experiment is to determine the role of PV neuron in the reglution of excitability of primary motor cortex (M1) during the exercise-induced fatigue and possible molecular mechanism. Methods Methods: Male Wistar rats randomly divided into control group(C),exhaustive exercise group(E) and repeated exhaustive exercise group(RE). The gradually increasing load treadmill exercise-induced fatigue model was employed in the Group E and RE.The in vivo multi-channel recording methods was used for recording the neuronal electrophysiological activities of primary motor cortex.To observe the neuron firing rate changes during the rest state,immediately after exhausted exercise and after repeated exhaustive exercise.We also detected the expression of PV positive neurons in the primary motor cortex by the immunofluorescence method. The western blot method was used to determine the expression of calmodulin-dependent protein kinase II (CaMKII)、phosphorylated calmodulin-dependent protein kinase II( pCaMKII) and extracellular signal regulated kinase (ERK) in the primary motor cortex. Results Results:The electrophysioligical results indicated that the neuron firing rate after repeated exhausted excise the neuron firing rate significantly decreased compared with the rest state (P<0.05),but have no significantly changes as compared with exhausted excise;The expression of PV positive neurons in the group of E and RE significantly increased compared with the group C(P<0.01);The western blot results indicated that the protein expression of ERK in group REsignificantly decreased compared with group C, the pCaMKII expression of group RE decreased,but have no statistical difference. Conclusions Conclusion: After exercise-indued fatigue ,the increase of PV positive neuron maybe one reason for the excitability changes in primary motor cortex.the alteraions in the electrical signal may be participate in the regluation of exercise-induced fatigue. pCaMKII and ERK signal pathway may invloved in the molecular mechanism of exercise-induced fatigue

    Integrated Sensing and Communications for V2I Networks: Dynamic Predictive Beamforming for Extended Vehicle Targets

    Get PDF
    We investigate sensing-assisted beamforming for vehicle-to-infrastructure (V2I) communication by exploiting integrated sensing and communications (ISAC) functionalities at the roadside unit (RSU). The RSU deploys a massive multi-input-multi-output (mMIMO) array at mmWave. The pencil-sharp mMIMO beams and fine range-resolution implicate that the point-target assumption is impractical, as the vehicle’s geometry becomes essential. Therefore, the communication receiver (CR) may never lie in the beam, even when the vehicle is accurately tracked. To tackle this problem, we consider the extended target with two novel schemes. For the first scheme, the beamwidth is adjusted in real-time to cover the entire vehicle, followed by an extended Kalman filter to predict and track the position of CR according to resolved scatterers. An upgraded scheme is proposed by splitting each transmission block into two stages. The first stage is exploited for ISAC with a wide beam. Based on the sensed results at the first stage, the second stage is dedicated to communication with a pencil-sharp beam, yielding significant communication improvements. We reveal the inherent tradeoff between the two stages in terms of their durations, and develop an optimal allocation strategy that maximizes the average achievable rate. Finally, simulations verify the superiorities of proposed schemes over state-of-the-art methods
    corecore