6 research outputs found

    Characterization of 9-Nitrocamptothecin Liposomes: Anticancer Properties and Mechanisms on Hepatocellular Carcinoma In Vitro and In Vivo

    Get PDF
    BACKGROUND: Hepatocellular carcinoma (HCC) is the third most common cause of cancer related mortality worldwide. 9-Nitrocamptothecin (9NC) is a potent topoisomerase-I inhibitor with strong anticancer effect. To increase the solubility and stability, we synthesized a novel 9NC loaded liposomes (9NC-LP) via incorporating 9NC into liposomes. In the present study, we determined the effects of 9NC and 9NC-LP on in vitro and in vivo, and the underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We first analyzed the characteristics of 9NC-LP. Then we compared the effects of 9NC and 9NC-LP on the proliferation and apoptosis of HepG2, Bel-7402, Hep3B and L02 cells in vitro. We also investigated their anticancer properties in nude mice bearing HCC xenograft in vivo. 9NC-LP has a uniform size (around 190 nm) and zeta potential (∼-11 mV), and exhibited a steady sustained-release pattern profile in vitro. Both 9NC and 9NC-LP could cause cell cycle arrest and apoptosis in a dose-dependent and p53-dependent manner. However, this effect was not ubiquitous in all cell lines. Exposure to 9NC-LP led to increased expression of p53, p21, p27, Bax, caspase-3, caspase-8, caspase-9 and apoptosis-inducing factor, mitochondrion-associated 1 and decreased expression of Bcl-2, cyclin E, cyclin A, Cdk2 and cyclin D1. Furthermore, 9NC-LP exhibited a more potent antiproliferative effect and less side effects in vivo. Western blot analysis of the xenograft tumors in nude mice showed similar changes in protein expression in vivo. CONCLUSIONS/SIGNIFICANCE: In conclusion, 9NC and 9NC-LP can inhibit HCC growth via cell cycle arrest and induction of apoptosis. 9NC-LP has a more potent anti-tumor effect and fewer side effects in vivo, which means it is a promising reagent for cancer therapy via intravenous administration

    Diagnostic and Prognostic Values of MANF Expression in Hepatocellular Carcinoma

    No full text
    Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and its prognosis is still poor. Mesencephalic astrocyte-derived neurotrophic factor (MANF) plays a key role in endoplasmic reticulum stress. ER stress plays a key role in HCC carcinogenesis. To confirm the clinical and prognostic value of MANF in HCC, we investigated the expression level of MANF in HCC as recorded in databases, and the results were verified by experiment. Survival analysis was probed by the Kaplan–Meier method. Cox regression models were used to ascertain the prognostic value of MANF in HCC tissue microarray. The diagnostic value of MANF in HCC was evaluated by receiver operating characteristic curve analysis. Potential correlation between MANF and selected genes was also analyzed. Results showed that MANF was overexpressed in HCC. Patients with high MANF expression levels had a worse prognosis and higher risk of tumor recurrence. Furthermore, the expression level of MANF had good diagnostic power. Correlation analysis revealed potential regulatory networks of MANF in HCC, laying a foundation for further study of the role of MANF in tumorigenesis. In conclusion, MANF was overexpressed in HCC and related to the occurrence and development of HCC. It is a potential diagnostic and prognostic indicator of HCC

    Multiomics strategies for decoding seed dormancy breakdown in Paris polyphylla

    No full text
    Abstract Background The disruption of seed dormancy is a complicated process and is controlled by various factors. Among these factors, membrane lipids and plant hormones are two of the most important ones. Paris polyphylla is an important Chinese herbaceous species, and the dormancy trait of its seed limits the cultivation of this herb. Results In this study, we investigate the global metabolic and transcriptomic profiles of Paris polyphylla during seed dormancy breaking. Widely targeted metabolomics revealed that lysophospholipids (lysoPLs) increased during P. polyphylla seed dormancy breaking. The expression of phospholipase A2 (PLA2), genes correlated to the production of lysoPLs, up-regulated significantly during this process. Abscisic acid (ABA) decreased dramatically during seed dormancy breaking of P. polyphylla. Changes of different GAs varied during P. polyphylla seeds dormancy breaking, 13-OH GAs, such as GA53 were not detected, and GA3 decreased significantly, whereas 13-H GAs, such as GA15, GA24 and GA4 increased. The expression of CYP707As was not synchronous with the change of ABA content, and the expression of most UGTs, GA20ox and GA3ox up-regulated during seed dormancy breaking. Conclusions These results suggest that PLA2 mediated production of lysoPLs may correlate to the seed dormancy breaking of P. polyphylla. The conversion of ABA to ABA-GE catalysed by UGTs may be the main cause of ABA degradation. Through inhibition the expression of genes related to the synthesis of 13-OH GAs and up-regulation genes related to the synthesis of 13-H GAs, P. polyphylla synthesized more bioactive 13-H GA (GA4) to break its seed dormancy
    corecore