24 research outputs found
Dlx2 homeobox gene transcriptional regulation of Trkb neurotrophin receptor expression during mouse retinal development
Dlx homeobox genes are first expressed in embryonic retina at E11.5. The Dlx1/Dlx2 null retina has a reduced ganglion cell layer (GCL), with loss of late-born differentiated retinal ganglion cells (RGCs) due to increased apoptosis. TrkB signaling is proposed to regulate the dynamics of RGC apoptosis throughout development. DLX2 expression markedly precedes the onset of TrkB expression in the GCL; TrkB co-expression with Dlx2 and RGC markers is well-established by E13.5. In the Dlx1/Dlx2 null retina, TrkB expression is significantly reduced by E16.5. We demonstrated that DLX2 binds to a specific region of the TrkB promoter in retinal neuroepithelium during embryogenesis. In vitro confirmation and the functional consequences of DLX2 binding to this TrkB regulatory region support TrkB as a Dlx2 transcriptional target. Furthermore, ectopic Dlx2 expression in retinal explants activates TrkB expression and Dlx2 knockdown in primary retinal cultures results in reduced TrkB expression. RGC differentiation and survival require the coordinated expression of transcription factors. This study establishes a direct transcriptional relationship between a homeodomain protein involved in RGC differentiation and a neurotrophin receptor implicated in RGC survival. Signaling mediated by TrkB may contribute to survival of late-born RGCs whose terminal differentiation is regulated by Dlx gene function
Characterization of 9-Nitrocamptothecin Liposomes: Anticancer Properties and Mechanisms on Hepatocellular Carcinoma In Vitro and In Vivo
BACKGROUND: Hepatocellular carcinoma (HCC) is the third most common cause of cancer related mortality worldwide. 9-Nitrocamptothecin (9NC) is a potent topoisomerase-I inhibitor with strong anticancer effect. To increase the solubility and stability, we synthesized a novel 9NC loaded liposomes (9NC-LP) via incorporating 9NC into liposomes. In the present study, we determined the effects of 9NC and 9NC-LP on in vitro and in vivo, and the underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: We first analyzed the characteristics of 9NC-LP. Then we compared the effects of 9NC and 9NC-LP on the proliferation and apoptosis of HepG2, Bel-7402, Hep3B and L02 cells in vitro. We also investigated their anticancer properties in nude mice bearing HCC xenograft in vivo. 9NC-LP has a uniform size (around 190 nm) and zeta potential (∼-11 mV), and exhibited a steady sustained-release pattern profile in vitro. Both 9NC and 9NC-LP could cause cell cycle arrest and apoptosis in a dose-dependent and p53-dependent manner. However, this effect was not ubiquitous in all cell lines. Exposure to 9NC-LP led to increased expression of p53, p21, p27, Bax, caspase-3, caspase-8, caspase-9 and apoptosis-inducing factor, mitochondrion-associated 1 and decreased expression of Bcl-2, cyclin E, cyclin A, Cdk2 and cyclin D1. Furthermore, 9NC-LP exhibited a more potent antiproliferative effect and less side effects in vivo. Western blot analysis of the xenograft tumors in nude mice showed similar changes in protein expression in vivo. CONCLUSIONS/SIGNIFICANCE: In conclusion, 9NC and 9NC-LP can inhibit HCC growth via cell cycle arrest and induction of apoptosis. 9NC-LP has a more potent anti-tumor effect and fewer side effects in vivo, which means it is a promising reagent for cancer therapy via intravenous administration
Innate Immune Response to Rift Valley Fever Virus in Goats
Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings
Diagnostic and Prognostic Values of MANF Expression in Hepatocellular Carcinoma
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors, and its prognosis is still poor. Mesencephalic astrocyte-derived neurotrophic factor (MANF) plays a key role in endoplasmic reticulum stress. ER stress plays a key role in HCC carcinogenesis. To confirm the clinical and prognostic value of MANF in HCC, we investigated the expression level of MANF in HCC as recorded in databases, and the results were verified by experiment. Survival analysis was probed by the Kaplan–Meier method. Cox regression models were used to ascertain the prognostic value of MANF in HCC tissue microarray. The diagnostic value of MANF in HCC was evaluated by receiver operating characteristic curve analysis. Potential correlation between MANF and selected genes was also analyzed. Results showed that MANF was overexpressed in HCC. Patients with high MANF expression levels had a worse prognosis and higher risk of tumor recurrence. Furthermore, the expression level of MANF had good diagnostic power. Correlation analysis revealed potential regulatory networks of MANF in HCC, laying a foundation for further study of the role of MANF in tumorigenesis. In conclusion, MANF was overexpressed in HCC and related to the occurrence and development of HCC. It is a potential diagnostic and prognostic indicator of HCC
Rift Valley fever virus incorporates the 78 kDa glycoprotein into virions matured in mosquito C6/36 cells.
Rift Valley fever virus (RVFV), genus Phlebovirus, family Bunyaviridae is a zoonotic arthropod-borne virus able to transition between distant host species, causing potentially severe disease in humans and ruminants. Viral proteins are encoded by three genomic segments, with the medium M segment coding for four proteins: nonstructural NSm protein, two glycoproteins Gn and Gc and large 78 kDa glycoprotein (LGp) of unknown function. Goat anti-RVFV polyclonal antibody and mouse monoclonal antibody, generated against a polypeptide unique to the LGp within the RVFV proteome, detected this protein in gradient purified RVFV ZH501 virions harvested from mosquito C6/36 cells but not in virions harvested from the mammalian Vero E6 cells. The incorporation of LGp into the mosquito cell line - matured virions was confirmed by immune-electron microscopy. The LGp was incorporated into the virions immediately during the first passage in C6/36 cells of Vero E6 derived virus. Our data indicate that LGp is a structural protein in C6/36 mosquito cell generated virions. The protein may aid the transmission from the mosquitoes to the ruminant host, with a possible role in replication of RVFV in the mosquito host. To our knowledge, this is a first report of different protein composition between virions formed in insect C6/36 versus mammalian Vero E6 cells
Changes in cell population frequencies in peripheral blood mononuclear cells in RVFV-infected goats.
<p>Column A: PBMCs from IN-RVFV-infected goats; Column B: PBMCs from MAM-RVFV-infected goats; Column C: Cell frequencies expressed as a percentage of pre-infection value for —▪— IN-RVFV and —♦—MAM RVFV- infected goats (n = 4 goats each). Data points in column A and B represent individual animals and the line represents the means. In column C data points represent means + standard deviation (error bars). MAM-RVFV = RVFV produced in the mammalian cell line Vero E6, IN-RVFV = RVFV produced in the insect cell line C6/36.</p
Adaptive cell mediated immunity in RVFV-infected goats.
<p>Means of PBMC IFN-γ response from IN-RVFV-infected goats are represented by the open histograms and MAM-RVFV infected goats by the filled histograms. Error bars represent standard deviation of means (n = 4 goats each). MAM-RVFV = RVFV produced in the mammalian cell line Vero E6, IN-RVFV = RVFV produced in the insect cell line C6/36.</p
Virus yield from goat monocyte-derived dendritic cells (MoDCs) inoculated with RVFV.
<p>MoDCs were infected with insect cell-derived RVFV (IN-RVFV) or mammalian cell –derived RVFV (MAM-RVFV) and after 24 h, the virus in supernatants was quantified by plaque assay. Histograms represent means + standard deviation.</p