10 research outputs found
A Novel Model for Predicting Associations between Diseases and LncRNA-miRNA Pairs Based on a Newly Constructed Bipartite Network
Motivation. Increasing studies have demonstrated that many human complex diseases are associated with not only microRNAs, but also long-noncoding RNAs (lncRNAs). LncRNAs and microRNA play significant roles in various biological processes. Therefore, developing effective computational models for predicting novel associations between diseases and lncRNA-miRNA pairs (LMPairs) will be beneficial to not only the understanding of disease mechanisms at lncRNA-miRNA level and the detection of disease biomarkers for disease diagnosis, treatment, prognosis, and prevention, but also the understanding of interactions between diseases and LMPairs at disease level. Results. It is well known that genes with similar functions are often associated with similar diseases. In this article, a novel model named PADLMP for predicting associations between diseases and LMPairs is proposed. In this model, a Disease-LncRNA-miRNA (DLM) tripartite network was designed firstly by integrating the lncRNA-disease association network and miRNA-disease association network; then we constructed the disease-LMPairs bipartite association network based on the DLM network and lncRNA-miRNA association network; finally, we predicted potential associations between diseases and LMPairs based on the newly constructed disease-LMPair network. Simulation results show that PADLMP can achieve AUCs of 0.9318, 0.9090 ± 0.0264, and 0.8950 ± 0.0027 in the LOOCV, 2-fold, and 5-fold cross validation framework, respectively, which demonstrate the reliable prediction performance of PADLMP
DataSheet5_A disease-related essential protein prediction model based on the transfer neural network.PDF
Essential proteins play important roles in the development and survival of organisms whose mutations are proven to be the drivers of common internal diseases having higher prevalence rates. Due to high costs of traditional biological experiments, an improved Transfer Neural Network (TNN) was designed to extract raw features from multiple biological information of proteins first, and then, based on the newly-constructed Transfer Neural Network, a novel computational model called TNNM was designed to infer essential proteins in this paper. Different from traditional Markov chain, since Transfer Neural Network adopted the gradient descent algorithm to automatically obtain the transition probability matrix, the prediction accuracy of TNNM was greatly improved. Moreover, additional antecedent memory coefficient and bias term were introduced in Transfer Neural Network, which further enhanced both the robustness and the non-linear expression ability of TNNM as well. Finally, in order to evaluate the identification performance of TNNM, intensive experiments have been executed based on two well-known public databases separately, and experimental results show that TNNM can achieve better performance than representative state-of-the-art prediction models in terms of both predictive accuracies and decline rate of accuracies. Therefore, TNNM may play an important role in key protein prediction in the future.</p
DataSheet4_A disease-related essential protein prediction model based on the transfer neural network.PDF
Essential proteins play important roles in the development and survival of organisms whose mutations are proven to be the drivers of common internal diseases having higher prevalence rates. Due to high costs of traditional biological experiments, an improved Transfer Neural Network (TNN) was designed to extract raw features from multiple biological information of proteins first, and then, based on the newly-constructed Transfer Neural Network, a novel computational model called TNNM was designed to infer essential proteins in this paper. Different from traditional Markov chain, since Transfer Neural Network adopted the gradient descent algorithm to automatically obtain the transition probability matrix, the prediction accuracy of TNNM was greatly improved. Moreover, additional antecedent memory coefficient and bias term were introduced in Transfer Neural Network, which further enhanced both the robustness and the non-linear expression ability of TNNM as well. Finally, in order to evaluate the identification performance of TNNM, intensive experiments have been executed based on two well-known public databases separately, and experimental results show that TNNM can achieve better performance than representative state-of-the-art prediction models in terms of both predictive accuracies and decline rate of accuracies. Therefore, TNNM may play an important role in key protein prediction in the future.</p
DataSheet3_A disease-related essential protein prediction model based on the transfer neural network.PDF
Essential proteins play important roles in the development and survival of organisms whose mutations are proven to be the drivers of common internal diseases having higher prevalence rates. Due to high costs of traditional biological experiments, an improved Transfer Neural Network (TNN) was designed to extract raw features from multiple biological information of proteins first, and then, based on the newly-constructed Transfer Neural Network, a novel computational model called TNNM was designed to infer essential proteins in this paper. Different from traditional Markov chain, since Transfer Neural Network adopted the gradient descent algorithm to automatically obtain the transition probability matrix, the prediction accuracy of TNNM was greatly improved. Moreover, additional antecedent memory coefficient and bias term were introduced in Transfer Neural Network, which further enhanced both the robustness and the non-linear expression ability of TNNM as well. Finally, in order to evaluate the identification performance of TNNM, intensive experiments have been executed based on two well-known public databases separately, and experimental results show that TNNM can achieve better performance than representative state-of-the-art prediction models in terms of both predictive accuracies and decline rate of accuracies. Therefore, TNNM may play an important role in key protein prediction in the future.</p
DataSheet1_A disease-related essential protein prediction model based on the transfer neural network.PDF
Essential proteins play important roles in the development and survival of organisms whose mutations are proven to be the drivers of common internal diseases having higher prevalence rates. Due to high costs of traditional biological experiments, an improved Transfer Neural Network (TNN) was designed to extract raw features from multiple biological information of proteins first, and then, based on the newly-constructed Transfer Neural Network, a novel computational model called TNNM was designed to infer essential proteins in this paper. Different from traditional Markov chain, since Transfer Neural Network adopted the gradient descent algorithm to automatically obtain the transition probability matrix, the prediction accuracy of TNNM was greatly improved. Moreover, additional antecedent memory coefficient and bias term were introduced in Transfer Neural Network, which further enhanced both the robustness and the non-linear expression ability of TNNM as well. Finally, in order to evaluate the identification performance of TNNM, intensive experiments have been executed based on two well-known public databases separately, and experimental results show that TNNM can achieve better performance than representative state-of-the-art prediction models in terms of both predictive accuracies and decline rate of accuracies. Therefore, TNNM may play an important role in key protein prediction in the future.</p
DataSheet2_A disease-related essential protein prediction model based on the transfer neural network.PDF
Essential proteins play important roles in the development and survival of organisms whose mutations are proven to be the drivers of common internal diseases having higher prevalence rates. Due to high costs of traditional biological experiments, an improved Transfer Neural Network (TNN) was designed to extract raw features from multiple biological information of proteins first, and then, based on the newly-constructed Transfer Neural Network, a novel computational model called TNNM was designed to infer essential proteins in this paper. Different from traditional Markov chain, since Transfer Neural Network adopted the gradient descent algorithm to automatically obtain the transition probability matrix, the prediction accuracy of TNNM was greatly improved. Moreover, additional antecedent memory coefficient and bias term were introduced in Transfer Neural Network, which further enhanced both the robustness and the non-linear expression ability of TNNM as well. Finally, in order to evaluate the identification performance of TNNM, intensive experiments have been executed based on two well-known public databases separately, and experimental results show that TNNM can achieve better performance than representative state-of-the-art prediction models in terms of both predictive accuracies and decline rate of accuracies. Therefore, TNNM may play an important role in key protein prediction in the future.</p
Table1_A disease-related essential protein prediction model based on the transfer neural network.XLSX
Essential proteins play important roles in the development and survival of organisms whose mutations are proven to be the drivers of common internal diseases having higher prevalence rates. Due to high costs of traditional biological experiments, an improved Transfer Neural Network (TNN) was designed to extract raw features from multiple biological information of proteins first, and then, based on the newly-constructed Transfer Neural Network, a novel computational model called TNNM was designed to infer essential proteins in this paper. Different from traditional Markov chain, since Transfer Neural Network adopted the gradient descent algorithm to automatically obtain the transition probability matrix, the prediction accuracy of TNNM was greatly improved. Moreover, additional antecedent memory coefficient and bias term were introduced in Transfer Neural Network, which further enhanced both the robustness and the non-linear expression ability of TNNM as well. Finally, in order to evaluate the identification performance of TNNM, intensive experiments have been executed based on two well-known public databases separately, and experimental results show that TNNM can achieve better performance than representative state-of-the-art prediction models in terms of both predictive accuracies and decline rate of accuracies. Therefore, TNNM may play an important role in key protein prediction in the future.</p
Public health implications of Yersinia enterocolitica investigation: an ecological modeling and molecular epidemiology study
Abstract Background Yersinia enterocolitica has been sporadically recovered from animals, foods, and human clinical samples in various regions of Ningxia, China. However, the ecological and molecular characteristics of Y. enterocolitica, as well as public health concerns about infection in the Ningxia Hui Autonomous Region, remain unclear. This study aims to analyze the ecological and molecular epidemiological characteristics of Y. enterocolitis in order to inform the public health intervention strategies for the contains of related diseases. Methods A total of 270 samples were collected for isolation [animals (n = 208), food (n = 49), and patients (n = 13)], then suspect colonies were isolated and identified by the API20E biochemical identification system, serological tests, biotyping tests, and 16S rRNA-PCR. Then, we used an ecological epidemiological approach combined with machine learning algorithms (general linear model, random forest model, and eXtreme Gradient Boosting) to explore the associations between ecological factors and the pathogenicity of Y. enterocolitis. Furthermore, average nucleotide identity (ANI) estimation, single nucleotide polymorphism (SNP), and core gene multilocus sequence typing (cgMLST) were applied to characterize the molecular profile of isolates based on whole genome sequencing. The statistical test used single-factor analysis, Chi-square tests, t-tests/ANOVA-tests, Wilcoxon rank-sum tests, and Kruskal–Wallis tests. Results A total of 270 isolates of Yersinia were identified from poultry and livestock (n = 191), food (n = 49), diarrhoea patients (n = 13), rats (n = 15), and hamsters (n = 2). The detection rates of samples from different hosts were statistically different (χ 2 = 22.636, P < 0.001). According to the relatedness clustering results, 270 isolates were divided into 12 species, and Y. enterocolitica (n = 187) is a predominated species. Pathogenic isolates made up 52.4% (98/187), while non-pathogenic isolates made up 47.6% (89/187). Temperature and precipitation were strongly associated with the pathogenicity of the isolates (P < 0.001). The random forest (RF) prediction model showed the best performance. The prediction result shows a high risk of pathogenicity Y. enterocolitica was located in the northern, northwestern, and southern of the Ningxia Hui Autonomous Region. The Y. enterocolitica isolates were classified into 54 sequence types (STs) and 125 cgMLST types (CTs), with 4/O:3 being the dominant bioserotype in Ningxia. The dominant STs and dominant CTs of pathogenic isolates in Ningxia were ST429 and HC100_2571, respectively. Conclusions The data indicated geographical variations in the distribution of STs and CTs of Y. enterocolitica isolates in Ningxia. Our work offered the first evidence that the pathogenicity of isolates was directly related to fluctuations in temperature and precipitation of the environment. CgMLST typing strategies showed that the isolates were transmitted to the population via pigs and food. Therefore, strengthening health surveillance on pig farms in high-risk areas and focusing on testing food of pig origin are optional strategies to prevent disease outbreaks