127 research outputs found

    Extended collimator model for pencil-beam dose calculation in proton radiotherapy

    Get PDF
    We have developed a simple collimator model to improve the accuracy of penumbra behaviour in pencil-beam dose calculation for proton radiotherapy. In this model, transmission of particles through a three-dimensionally extended opening of a collimator is calculated in conjunction with phase-space distribution of the particles. Comparison of the dose distributions calculated using the new three-dimensional collimator model and the conventional twodimensional model to lateral dose profiles experimentally measured with collimated proton beams showed the superiority of the new model over the conventional one

    The grid-dose-spreading algorithm for dose distribution calculation in heavy charged particle radiotherapy

    Get PDF
    A new variant of the pencil-beam (PB) algorithm for dose distribution calculation for radiotherapy with protons and heavier ions, the grid-dose spreading (GDS) algorithm, is proposed. The GDS algorithm is intrinsically faster than conventional PB algorithms due to approximations in convolution integral, where physical calculations are decoupled from simple grid-to-grid energy transfer. It was effortlessly implemented to a carbon-ion radiotherapy treatment planning system to enable realistic beam blurring in the field, which was absent with the broad-beam (BB) algorithm. For a typical prostate treatment, the slowing factor of the GDS algorithm relative to the BB algorithm was 1.4, which is a great improvement over the conventional PB algorithms with a typical slowing factor of several tens. The GDS algorithm is mathematically equivalent to the PB algorithm for horizontal and vertical coplanar beams commonly used in carbon-ion radiotherapy while dose deformation within the size of the pristine spread occurs for angled beams, which was within 3 mm for a single proton pencil beam of 3030^\circ incidence, and needs to be assessed against the clinical requirements and tolerances in practical situations.Comment: 7 pages, 3 figure

    Survey of imaging dose in HDR brachytherapy

    Get PDF
    Institutional imaging protocols for the verification of brachytherapy applicator placements were investigated in a survey study of domestic radiotherapy institutions. The survey form designed by a free on-line survey system was distributed via the mailing-list system of the Japanese Society for Radiation Oncology. Survey data of 75 institutions between August 2019 and October 2019 were collected. The imaging modalities used were dependent on resources available to the institutions. The displacement of a brachytherapy applicator results in significant dosimetric impact. It is essential to verify applicator placements using imaging modalities before treatment. Various imaging modalities used in institutions included a computed tomography (CT) scanner, an angiography X-ray system, a multi-purpose X-ray system and a radiotherapy simulator. The median total exposure time in overall treatment sessions was ≤75 s for gynecological and prostate cancers. Some institutions used fluoroscopy to monitor the brachytherapy source movement. Institutional countermeasures for reducing unwanted imaging dose included minimizing the image area, changing the imaging orientation, reducing the imaging frequency and optimizing the imaging conditions. It is worth noting that half of the institutions did not confirm imaging dose regularly. This study reported on the usage of imaging modalities for brachytherapy in Japan. More caution should be applied with interstitial brachytherapy with many catheters that can lead to potentially substantial increments in imaging doses for monitoring the actual brachytherapy source using fluoroscopy. It is necessary to share imaging techniques, standardize imaging protocols and quality assurance/quality control among institutions, and imaging dose guidelines for optimization of imaging doses delivered in radiotherapy should be developed

    Predicting the Biological Effects of Human Salivary Gland Tumour Cells for Scanned 4He-, 12C-, 16O-, and 20Ne-Ion Beams Using an SOI Microdosimeter

    Get PDF
    Experimental microdosimetry along with the microdosimetric kinetic (MK) model can be utilized to predict the biological effects of ions. To predict the relative biological effectiveness (RBE) of ions and the survival fraction (SF) of human salivary gland tumour (HSGc-C5) cells, microdosimetric quantities measured by a silicon-on-insulator (SOI) MicroPlus-mushroom microdosimeter along the spread-out Bragg peak (SOBP) delivered by pencil beam scanning of 4He, 12C, 16O, and 20Ne ions were used. The MK model parameters of HSGc-C5 cells were obtained from the best fit of the calculated SF for the different linear energy transfer (LET) of these ions and the formerly reported in vitro SF for the same LET and ions used for calculations. For a cube-shaped target of 10 × 10 × 6 cm3, treatment plans for 4He, 12C, 16O, and 20Ne ions were produced with proprietary treatment planning software (TPS) aiming for 10% SF of HSGc-C5 cells over the target volume and were delivered to a polymethyl methacrylate (PMMA) phantom. Afterwards, the saturation-corrected dose-mean lineal energy derived based on the measured microdosimetry spectra, along with the physical dose at various depths in PMMA phantoms, was used for the estimation of the SF, RBE, and RBE-weighted dose using the MK model. The predicted SF, RBE, and the RBE-weighted dose agreed with what was planned by the TPS within 3% at most depths for these ions.publishedVersio

    The latest update on individual external doses in an early stage after the Fukushima nuclear accident

    Get PDF
    Following the Fukushima Daiichi Nuclear Power Plant accident, a survey for estimating individual external doses for the first 4 months after the accident was started, and it remains ongoing. Since the authors' previous paper, 44 605 new dose estimates have been made. The new dose estimates increase the number of dose estimates to 465 999 and are reported in this note. Since the previous paper, most of the recently collected responses have been gotten through public relations activities to encourage responses across the prefecture. Thus, recent respondents might be biased ('selection bias'). Also, the dose estimates were based on self-administered responses about personal behaviour, which relied on memories of residents. In this respect, incorrect behaviour records possibly resulted as memories have faded over time ('recall bias'). However, the effects of these biases on dose distribution on a whole-prefecture basis seemed to be small

    Age dependence of individual external doses in an early stage after the Fukushima nuclear accident

    Get PDF
    Individual external doses for the first 4 months after the Fukushima accident have been estimated by the 'Basic Survey' of the Fukushima Health Management Survey. On the other hand, the UNSCEAR 2013 report presented the first-year effective dose due to external radiation for each municipality in nonevacuated areas of Fukushima Prefecture. In this study, the doses estimated by the Basic Survey were averaged for each of three age groups (infants, 0-5 y; children, 6-15 y; and adults, >16 y), in accordance with the categories adopted by the UNSCEAR report. The average dose ratios (infants/adults and children/adults) obtained from the Basic Survey were 1.08 and 1.06 for nonevacuated areas, respectively. These were smaller than the estimation by the UNSCEAR report (1.7 and 1.4, respectively). Three factors (body size factor, location factor and occupancy factor) were discussed and the location and occupancy factors were likely to be reasons for the difference

    Computational modeling of beam-customization devices for heavy-charged-particle radiotherapy

    Get PDF
    A model for beam customization with collimators and a range-compensating filter based on the phase-space theory for beam transport is presented for dose distribution calculation in treatment planning of radiotherapy with protons and heavier ions. Independent handling of pencil beams in conventional pencil-beam algorithms causes unphysical collimator-height dependence in the middle of large fields, which is resolved by the framework comprised of generation, transport, collimation, regeneration, range-compensation, and edge-sharpening processes with a matrix of pencil beams. The model was verified to be consistent with measurement and analytic estimation at a submillimeter level in penumbra of individual collimators with a combinational-collimated carbon-ion beam. The model computation is fast, accurate, and readily applicable to pencil-beam algorithms in treatment planning with capability of combinational collimation to make best use of the beam-customization devices.Comment: 16 pages, 5 figure

    An influential factor for external radiation dose estimation for residents after the Fukushima Daiichi Nuclear Power Plant accident-time spent outdoors for residents in Iitate Village

    Get PDF
    Many studies have been conducted on radiation doses to residents after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Time spent outdoors is an influential factor for external dose estimation. Since little information was available on actual time spent outdoors for residents, different values of average time spent outdoors per day have been used in dose estimation studies on the FDNPP accident. The most conservative value of 24 h was sometimes used, while 2.4 h was adopted for indoor workers in the UNSCEAR 2013 report. Fukushima Medical University has been estimating individual external doses received by residents as a part of the Fukushima Health Management Survey by collecting information on the records of moves and activities (the Basic Survey) after the accident from each resident. In the present study, these records were analyzed to estimate an average time spent outdoors per day. As an example, in Iitate Village, its arithmetic mean was 2.08 h (95% CI: 1.64-2.51) for a total of 170 persons selected from respondents to the Basic Survey. This is a much smaller value than commonly assumed. When 2.08 h is used for the external dose estimation, the dose is about 25% (23-26% when using the above 95% CI) less compared with the dose estimated for the commonly used value of 8 h

    Representativeness of individual external doses estimated for one quarter of residents in the Fukushima Prefecture after the nuclear disaster: the Fukushima Health Management Survey

    Get PDF
    After the Fukushima Dai-ichi Nuclear Power Plant accident, the Fukushima Health Management Survey (FHMS) was launched. The Basic Survey, a component of FHMS, is a questionnaire used to survey residents across the Fukushima Prefecture about their behaviour in the first 4 months after the accident. The questionnaire findings are used to determine individual external doses by linking behaviour data to a computer programme with daily gamma ray dose rate maps, drawn after the accident. Through 30 June 2015, the response rate was only 27.2% (558 550 population), indicating that the findings might not be generalisable because of poor representativeness of the population. The objective of this study was to clarify if the data from the FHMS Basic Survey were representative of the entire population, by conducting a new survey to compare the external doses between non-respondents and respondents in the previous survey. A total of 5350 subjects were randomly selected from 7 local regions of Fukushima Prefecture. An interview survey was conducted with the non-respondents to the FHMS Basic Survey. A total of 990 responses were obtained from the previous non-responders by interview survey. For the regions Kempoku, Kenchu, Kennan, Aizu, Minami-Aizu, Soso, and Iwaki, differences in mean effective dose (95% confidence interval) in mSv between the non-responders and previous responders were 0.12 (0.01-0.23), -0.09 (-0.21-0.03), -0.06 (-0.18-0.07), 0.05 (-0.04-0.14), 0.01 (-0.01-0.02), 0.09 (0.01-0.17), 0.09 (0.00-0.17), respectively. The differences fall neither within the interval (-∞, -0.25) nor within the interval (0.25, ∞). These findings imply that mean effective doses between the previous and new respondents were not different, with a significantly indifferent region of 0.25 mSv according to equivalence tests. The present study indicates that the dose distribution obtained from about one-quarter of Fukushima residents represents the dose distribution for the entire Fukushima Prefecture
    corecore