22 research outputs found

    A low-power technique for pipelined ADCs with programmable gain amplification

    No full text

    Nosocomial Infection Management Using Web Site established in the LAN

    No full text

    Microbial Degradation Behavior in Seawater of Polyester Blends Containing Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)

    No full text
    The microbial degradation behavior of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and its compound with several polyesters such as poly(butylene adipate-co-telephtharate) (PBAT), poly(butylene succinate) (PBS), and polylactic acid (PLA) in seawater was tested by a biological oxygen demand (BOD) method. PHBHHx showed excellent biodegradation in seawater in this study. In addition, the biodegradation rate of several blends was much influenced by the weight ratio of PHBHHx in their blends and decreased in accordance with the decrement of PHBHHX ratio. The surface morphology of the sheet was important factor for controlling the biodegradation rate of PHBHHx-containing blends in seawater

    An Area-Efficient up/down Double-Sampling Circuit for a LOFIC CMOS Image Sensor

    No full text
    A lateral overflow integration capacitor (LOFIC) complementary metal oxide semiconductor (CMOS) image sensor can realize high-dynamic-range (HDR) imaging with combination of a low-conversion-gain (LCG) signal for large maximum signal electrons and a high-conversion-gain (HCG) signal for electron-referred noise floor. However, LOFIC-CMOS image sensor requires a two-channel read-out chain for LCG and HCG signals whose polarities are inverted. In order to provide an area-efficient LOFIC-CMOS image sensor, a one-channel read-out chain that can process both HCG and LCG signals is presented in this paper. An up/down double-sampling circuit composed of an inverting amplifier for HCG signals and a non-inverting attenuator for LCG signals can reduce the area of the read-out chain by half compared to the conventional two-channel read-out chain. A test chip is fabricated in a 0.18 Ī¼m CMOS process with a metalā€“insulatorā€“metal (MIM) capacitor, achieving a readout noise of 130 Ī¼Vrms for the HCG signal and 1.19 V for the LCG input window. The performance is equivalent to 103 dB of the dynamic range with our previous LOFIC pixel in which HCG and LCG conversion gains are, respectively, 160 Ī¼V/eāˆ’ and 10 Ī¼V/eāˆ’

    An Over 90 dB Intra-Scene Single-Exposure Dynamic Range CMOS Image Sensor Using a 3.0 Ī¼m Triple-Gain Pixel Fabricated in a Standard BSI Process

    No full text
    To respond to the high demand for high dynamic range imaging suitable for moving objects with few artifacts, we have developed a single-exposure dynamic range image sensor by introducing a triple-gain pixel and a low noise dual-gain readout circuit. The developed 3 Ī¼m pixel is capable of having three conversion gains. Introducing a new split-pinned photodiode structure, linear full well reaches 40 keāˆ’. Readout noise under the highest pixel gain condition is 1 eāˆ’ with a low noise readout circuit. Merging two signals, one with high pixel gain and high analog gain, and the other with low pixel gain and low analog gain, a single exposure dynamic rage (SEHDR) signal is obtained. Using this technology, a 1/2.7ā€, 2M-pixel CMOS image sensor has been developed and characterized. The image sensor also employs an on-chip linearization function, yielding a 16-bit linear signal at 60 fps, and an intra-scene dynamic range of higher than 90 dB was successfully demonstrated. This SEHDR approach inherently mitigates the artifacts from moving objects or time-varying light sources that can appear in the multiple exposure high dynamic range (MEHDR) approach
    corecore