214 research outputs found

    Oncolytic Adenovirus-Induced Autophagy: Tumor-Suppressive Effect and Molecular Basis

    Get PDF
    Autophagy is a catabolic process that produces energy through lysosomal degradation of intracellular organelles. Autophagy functions as a cytoprotective factor under physiological conditions such as nutrient deprivation, hypoxia, and interruption of growth factors. On the other hand, infection with pathogenic viruses and bacteria also induces autophagy in infected cells. Oncolytic virotherapy with replication-competent viruses is thus a promising strategy to induce tumor-specific cell death. Oncolytic adenoviruses induce autophagy and subsequently contribute to cell death rather than cell survival in tumor cells. We previously developed a telomerase-specific replication-competent oncolytic adenovirus, OBP-301, which induces cell lysis in tumor cells with telomerase activities. OBP-301-mediated cytopathic activity is significantly associated with induction of autophagy biomarkers. In this review, we focus on the tumor-suppressive role and molecular basis of autophagic machinery induced by oncolytic adenoviruses. Addition of tumor-specific promoters and modification of the fiber knob of adenoviruses supports the oncolytic adenovirus-mediated autophagic cell death. Autophagy is cooperatively regulated by the E1-dependent activation pathway, E4-dependent inhibitory pathway, and microRNA-dependent fine-tuning. Thus, future exploration of the functional role and molecular mechanisms underlying oncolytic adenovirus-induced autophagy would provide novel insights and improve the therapeutic potential of oncolytic adenoviruses

    Anorectal leiomyoma with GLUT1 overexpression mimicking malignancy on FDG-PET/CT

    Get PDF
    A 43-year-old female underwent pelvic magnetic resonance imaging for uterine myoma that incidentally revealed a 4.6 x 2.8 cm soft tissue mass in the anorectal region. Rectal endoscopy showed a submucosal tumor just above the anal canal. Fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) revealed an anorectal tumor with very high FDG uptake. Aspiration cytology and needle biopsy were inconclusive, and the patient underwent trans-perineal tumor resection. The excised tumor was a 4.6 x 3.5 x 2.7 cm gray-white bifurcated nodular tumor. Light microscopy revealed fenestrated growth of poorly dysmorphic short spindle-shaped cells with eosinophilic sporophytes. Immunohistochemical staining was positive for alpha SMA and desmin, negative for CD117 (KIT) and S100, and the patient was diagnosed with benign leiomyoma. Tumor cells were also positive for glucose transporter-1 (GLUT1) immunohistochemically. It is important to keep in mind that FDG-PET/CT may show false-positive results even in benign anal leiomyoma for various reasons, including GLUT1 overexpression

    Adenoviral targeting of malignant melanoma for fluorescence-guided surgery prevents recurrence in orthotopic nude-mouse models.

    Get PDF
    Malignant melanoma requires precise resection in order to avoid metastatic recurrence. We report here that the telomerase-dependent, green fluorescent protein (GFP)-containing adenovirus OBP-401 could label malignant melanoma with GFP in situ in orthotopic mouse models. OBP-401-based fluorescence-guided surgery (FGS) resulted in the complete resection of malignant melanoma in the orthotopic models, where conventional bright-light surgery (BLS) could not. High-dose administration of OBP-401 enabled FGS without residual cancer cells or recurrence, due to its dual effect of cancer-cell labeling with GFP and killing

    Collagenous Colitis in a Patient With Gastric Cancer Who Underwent Chemotherapy

    Get PDF
    Herein, we present a case of collagenous colitis in a patient who underwent chemotherapy for gastric cancer, comprising five cycles of S-1 plus oxaliplatin and trastuzumab, followed by five cycles of paclitaxel and ramucirumab and seven cycles of nivolumab. The subsequent initiation of trastuzumab deruxtecan chemotherapy led to the development of grade 3 diarrhea after the second cycle of treatment. Collagenous colitis was diagnosed via colonoscopy and biopsy. The patient's diarrhea improved following the cessation of lansoprazole. This case highlights the importance of considering collagenous colitis as a differential diagnosis, in addition to chemotherapy-induced colitis and immune-related adverse event (irAE) colitis, in patients with similar clinical presentations

    Supply Constraint from Earthquakes in Japan in Input-Output Analysis

    Get PDF
    Disasters often cause exogenous flow damage (i.e., the [hypothetical] difference in economic scale with and without a disaster in a certain period) to production (“supply constraint”). However, input-output (IO) analysis (IOA) cannot usually consider it, because the Leontief quantity model (LQM) assumes that production is endogenous; the Ghosh quantity model (GQM) is considered implausible; and the Leontief price model (LPM) and the Ghosh price model (GPM) assume that quantity is fixed. This study proposes to consider a supply constraint in the LPM, introducing the price elasticity of demand. This study uses the loss of social surplus (SS) as a damage estimation because production (sales) is less informative as a damage index than profit (margin); that is, production can be any amount if without considering profit, and it does not tell exactly how much profit is lost for each supplier (upstream sector) and buyer (downstream sector). As a model application, this study examines Japan’s largest five earthquakes from 1995 to 2017 and the Great East Japan Earthquake (GEJE) in March 2011. The worst earthquake at the peak tends to increase price by 10-20% and decrease SS by 20-30%, when compared with the initial month’s prices/production. The worst damage tends to last eight months at most, accumulating 0.5-month-production damage (i.e., the sum of [hypothetical] differences in SS with and without an earthquake [for eight months] is 50% of the initial month production). Meanwhile, the GEJE in the five prefectures had cumulatively, a 25-month-production damage until the temporal recovery at the 37th month

    Prone-Position Thoracoscopic Ligation of the Thoracic Duct for Chyle Leak Following Radical Neck Dissection in a Patient with a Right Aortic Arch

    Get PDF
    A chyle leak can occur as a complication after neck or chest surgery. Such a leak prolongs the hospital stay and is sometimes life-threatening. The treatment options are conservative management, interventional radiologic embolization, and surgery. Thoracoscopic ligation of the thoracic duct has emerged as a promising and definitive treatment. The case of a 65-year-old Japanese male patient with a rare congenital right aortic arch (typeâ…˘B1 of EdwardĘĽs classification) and a severe chyle leak that occurred after a total pharyngolaryngo-esophagectomy (TPLE) is described. The chyle leak was successfully managed by thoracoscopic ligation of the thoracic duct via a left-side approach with the patient in the prone position

    Precise navigation surgery of tumours in the lung in mouse models enabled by in situ fluorescence labelling with a killer-reporter adenovirus.

    Get PDF
    BackgroundCurrent methods of image-guided surgery of tumours of the lung mostly rely on CT. A sensitive procedure of selective tumour fluorescence labelling would allow simple and high-resolution visualisation of the tumour for precise surgical navigation.MethodsHuman lung cancer cell lines H460 and A549 were genetically transformed to express red fluorescent protein (RFP). Tumours were grown subcutaneously for each cell line and harvested and minced for surgical orthotopic implantation on the left lung of nude mice. Tumour growth was measured by fluorescence imaging. After the tumours reached 5 mm in diameter, they were injected under fluorescence guidance with the telomerase-dependent green fluorescent protein (GFP)-containing adenovirus, OBP-401. Viral labelling of the lung tumours with GFP precisely colocalised with tumour RFP expression. Three days after administration of OBP-401, fluorescence-guided surgery (FGS) was performed.ResultsFGS of tumours in the lung was enabled by labelling with a telomerase-dependent adenovirus containing the GFP gene. Tumours in the lung were selectively and brightly labelled. FGS enabled complete lung tumour resection with no residual fluorescent tumour.ConclusionsFGS of tumours in the lung is feasible and more effective than bright-light surgery

    Tumor-targeting adenovirus OBP-401 inhibits primary and metastatic tumor growth of triple-negative breast cancer in orthotopic nude-mouse models.

    Get PDF
    Our laboratory previously developed a highly-invasive, triple-negative breast cancer (TNBC) variant using serial orthotopic implantation of the human MDA-MB-231 cell line in nude mice. The isolated variant was highly-invasive in the mammary gland and lymphatic channels and metastasized to lymph nodes in 10 of 12 mice compared to 2 of 12 of the parental cell line. In the present study, the tumor-selective telomerase dependent OBP-401 adenovirus was injected intratumorally (i.t.) (1 Ă— 108 PFU) when the high-metastatic MDA-MB-231 primary tumor expressing red fluorescent protein (MDA-MB-231-RFP) reached approximately 500 mm3 (diameter; 10 mm). The mock-infected orthotopic primary tumor grew rapidly. After i.t. OBP-401 injection, the growth of the orthotopic tumors was arrested. Six weeks after implantation, the fluorescent area and fluorescence intensity showed no increase from the beginning of treatment. OBP-401 was then injected into high-metastatic MDA-MB-231-RFP primary orthotopic tumor growing in mice which already had developed metastasis within lymphatic ducts. All 7 of 7 control mice subsequently developed lymph node metastasis. In contrast, none of 7 mice which received OBP-401 had lymph node metastasis. Seven of 7 control mice also had gross lung metastasis. In contrast, none of the 7 mice which received OBP-401 had gross lung metastasis. Confocal laser microscopy imaging demonstrated that all control mice had diffuse lung metastases. In contrast, all 7 mice which received OBP-401 only had a few metastatic cells in the lung. OBP-401 treatment significantly extended survival of the treated mice

    FUCCI Real-Time Cell-Cycle Imaging as a Guide for Designing Improved Cancer Therapy: A Review of Innovative Strategies to Target Quiescent Chemo-Resistant Cancer Cells

    Get PDF
    Progress in chemotherapy of solid cancer has been tragically slow due, in large part, to the chemoresistance of quiescent cancer cells in tumors. The fluorescence ubiquitination cell-cycle indicator (FUCCI) was developed in 2008 by Miyawaki et al., which color-codes the phases of the cell cycle in real-time. FUCCI utilizes genes linked to different color fluorescent reporters that are only expressed in specific phases of the cell cycle and can, thereby, image the phases of the cell cycle in real-time. Intravital real-time FUCCI imaging within tumors has demonstrated that an established tumor comprises a majority of quiescent cancer cells and a minor population of cycling cancer cells located at the tumor surface or in proximity to tumor blood vessels. In contrast to most cycling cancer cells, quiescent cancer cells are resistant to cytotoxic chemotherapy, most of which target cells in S/G2/M phases. The quiescent cancer cells can re-enter the cell cycle after surviving treatment, which suggests the reason why most cytotoxic chemotherapy is often ineffective for solid cancers. Thus, quiescent cancer cells are a major impediment to effective cancer therapy. FUCCI imaging can be used to effectively target quiescent cancer cells within tumors. For example, we review how FUCCI imaging can help to identify cell-cycle-specific therapeutics that comprise decoy of quiescent cancer cells from G1 phase to cycling phases, trapping the cancer cells in S/G2 phase where cancer cells are mostly sensitive to cytotoxic chemotherapy and eradicating the cancer cells with cytotoxic chemotherapy most active against S/G2 phase cells. FUCCI can readily image cell-cycle dynamics at the single cell level in real-time in vitro and in vivo. Therefore, visualizing cell cycle dynamics within tumors with FUCCI can provide a guide for many strategies to improve cell-cycle targeting therapy for solid cancers

    Fluorescence-guided surgery of a highly-metastatic variant of human triple-negative breast cancer targeted with a cancer-specific GFP adenovirus prevents recurrence.

    Get PDF
    We have previously developed a genetically-engineered GFP-expressing telomerase-dependent adenovirus, OBP-401, which can selectively illuminate cancer cells. In the present report, we demonstrate that targeting a triple-negative high-invasive human breast cancer, orthotopically-growing in nude mice, with OBP-401 enables curative fluorescence-guided surgery (FGS). OBP-401 enabled complete resection and prevented local recurrence and greatly inhibited lymph-node metastasis due to the ability of the virus to selectively label and subsequently kill cancer cells. In contrast, residual breast cancer cells become more aggressive after bright (white)-light surgery (BLS). OBP-401-based FGS also improved the overall survival compared with conventional BLS. Thus, metastasis from a highly-aggressive triple-negative breast cancer can be prevented by FGS in a clinically-relevant mouse model
    • …
    corecore