33 research outputs found

    Monosomal Karyotype at the Time of Diagnosis or Transplantation Predicts Outcomes of Allogeneic Hematopoietic Cell Transplantation in Myelodysplastic Syndrome

    Get PDF
    AbstractVarious cytogenetic risk scoring systems may determine prognosis for patients with myelodysplastic syndromes (MDS). We evaluated 4 different risk scoring systems in predicting outcome after allogeneic hematopoietic cell transplantation (alloHCT). We classified 124 patients with MDS using the International Prognostic Scoring System (IPSS), the revised International Prognostic Scoring System (R-IPSS), Armand's transplantation-specific cytogenetic grouping, and monosomal karyotype (MK) both at the time of diagnosis and at alloHCT. After adjusting for other important factors, MK at diagnosis (compared with no MK) was associated with poor 3-year disease-free survival (DFS) (27% [95% confidence interval, 12% to 42%] versus 39% [95% confidence interval, 28% to 50%], P = .02) and overall survival (OS) (29% [95% confidence interval, 14% to 44%] versus 47% [95% confidence interval, 36% to 59%], P = .02). OS but not DFS was affected by MK at alloHCT. MK frequency was uncommon in low-score R-IPPS and IPSS. Although IPSS and R-IPSS discriminated good/very good groups from poor/very poor groups, patients with intermediate-risk scores had the worst outcomes and, therefore, these scores did not show a progressive linear discriminating trend. Cytogenetic risk score change between diagnosis and alloHCT was uncommon and did not influence OS. MK cytogenetics in MDS are associated with poor survival, suggesting the need for alternative or intensified approaches to their treatment

    BaFe12O19 single-particle-chain nanofibers : preparation, characterization, formation principle, and magnetization reversal mechanism

    Get PDF
    BaFe12O19 single-particle-chain nanofibers have been successfully prepared by an electrospinning method and calcination process, and their morphology, chemistry, and crystal structure have been characterized at the nanoscale. It is found that individual BaFe12O19 nanofibers consist of single nanoparticles which are found to stack along the nanofiber axis. The chemical analysis shows that the atomic ratio of Ba/Fe is 1:12, suggesting a BaFe12O19 composition. The crystal structure of the BaFe12O19 single-particle-chain nanofibers is proved to be M-type hexagonal. The single crystallites on each BaFe12O19 single-particlechain nanofibers have random orientations. A formation mechanism is proposed based on thermogravimetry/differential thermal analysis (TG-DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) at six temperatures, 250, 400, 500, 600, 650, and 800 �C. The magnetic measurement of the BaFe12O19 single-particle-chain nanofibers reveals that the coercivity reaches a maximum of 5943 Oe and the saturated magnetization is 71.5 emu/g at room temperature. Theoretical analysis at the micromagnetism level is adapted to describe the magnetic behavior of the BaFe12O19 single-particle-chain nanofibers

    Transplant Physicians’ Attitudes on Candidacy for Allogeneic Hematopoietic Cell Transplantation (HCT) in Older Patients: The Need for a Standardized Geriatric Assessment (GA) Tool

    Get PDF
    Background Despite improvements in conditioning regimens and supportive care having expanded the curative potential of HCT, underutilization of HCT in older adults persists (Bhatt VR et al, BMT 2017). Therefore, we conducted a survey of transplant physicians (TP) to determine their perceptions of the impact of older age (≥60 years) on HCT candidacy and utilization of tools to gauge candidacy. Methods We conducted a 23-item, online cross-sectional survey of adult physicians recruited from the Center for International Blood and Marrow Transplant Research between May and July 2019. Results 175/770 (22.7%) TP completed the survey; majority of respondents were 41-60 years old, male, and practicing in a teaching hospital. Over 75% were at centers performing ≥50 HCT per year. When considering regimen intensity, most (96%, n=168) had an upper age limit (UAL) for using a myeloablative regimen (MAC), with only 29 physicians (17%) stating they would consider MAC for patients ≥70 years. In contrast, when considering a reduced intensity/non-myeloablative conditioning (RIC/NMA), 8%, (n=13), 54% (n=93), and 20% (n=35) stated that age 70, 75, and 80 years respectively would be the UAL to use this approach, with 18% (n=31) reporting no UAL. TP agreed that Karnofsky Performance Score (KPS) could exclude older pts for HCT, with 39.1% (n=66), 42.6% (n=72), and 11.4% (n=20) requiring KPS of ≥70, 80, and 90, respectively. The majority (n=92, 52.5%) indicated an HCT-comorbidity index threshold for exclusion, mostly ranging from ≥3 to ≥ 5. Almost all (89.7%) endorsed the need for a better health assessment of pre-HCT vulnerabilities to guide candidacy for pts ≥60 with varied assessments being utilized beyond KPS (Figure 1). However, the majority of centers rarely (33.1%) or never (45.7%) utilize a dedicated geriatrician/geriatric-oncologist to assess alloHCT candidates ≥60 yrs. The largest barriers to performing GA included uncertainty about which tools to use, lack of knowledge and training, and lack of appropriate clinical support staff (Figure 2). Approximately half (n=78, 45%) endorsed GA now routinely influences candidacy. Conclusions The vast majority of TP will consider RIC/NMA alloHCT for patients ≥70 years. However, there is heterogeneity in assessing candidacy. Incorporation of GA into a standardized and easily applied health assessment tool for risk stratification is an unmet need. The recently opened BMT CTN 1704 may aid in addressing this gap

    Demographic differences among patients treated with chimeric antigen receptor T-cell therapy in the United States

    Get PDF
    Background: It is not clear if all Americans have benefitted equally from the availability of chimeric antigen receptor T-cell (CART) therapy. We aimed to evaluate if demographic differences existed among adult patients who received CART therapy and to assess predictors of CART treatment outcomes. Methods: Records of patients ≥18 years who received CART therapy for non-Hodgkin’s lymphoma, acute lymphoblastic leukemia, and multiple myeloma in 2018 were evaluated in the National Inpatient Sample. Acute complications and inhospital mortality were compared between two groups of CART recipients: Whites and non-Whites. Logistic regression analysis was used to evaluate the association between sociodemographic factors and inhospital mortality. Results: Of 1275 CART recipients that met inclusion criteria, there were 40.4% of females, 66.9% of Whites, Blacks (4.2%), Hispanics (13.3%), Asians or Pacific Islanders (4.2%), and Native Americans (1.3%). Up to 96.8% of CART procedures were performed in urban teaching hospitals, and 85.3% of CART recipients lived in metropolitan counties. Non-Whites, compared to Whites, were younger at the time of CART therapy (p < 0.001). The inhospital mortality rate was higher in non-Whites, though not statistically significant (5.4% vs. 4.4%, p = 0.764). There were no differences in length of hospital stay, hospital charges, or rates of acute toxicities between the two race groups. We found no association between race and treatment outcomes. Gender, neurotoxicity, and Charlson Comorbidity Index were significant predictors of inhospital mortality. Conclusions: CART therapy recipients in the United States were more likely to be Whites and more likely to be residents of metropolitan areas. These observed demographic differences were not associated with treatment outcomes or inhospital mortalities. © 2022 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore