28 research outputs found
Correlation between seismic wave velocity, rock porosity and maximum principal stress based on the laboratory test data
In order to determine the internal relationships among seismic wave velocity, axial pressure, and rock porosity, the rock samples taken from NRS170143 borehole of the Nickel Rim South mine are tested using a Hoek type triaxial cell equipped with axial linear variable differential transducers (LVDTs) and a data acquisition module. The empirical expression between seismic wave velocity and rock pressure is fitted based on the laboratory test data of rock samples. Then, P-V model P-φ model and φ-ε model are created to analyze the laboratory test data. The results show that: (1) the relationship between axial pressure and rock porosity can be represented by a new empirical equation φ=a*e-b*P-c. With an increase of axial pressure, the value of rock porosity gradually decreases below the straight line φ=1% and close to 0. The P-φ model can be a good judge if the pressure has reached the maximum compression pressure in the process of rock compression experiment; (2) The P wave velocity and S wave velocity exponentially increase with increasing axial pressure; Rock porosity and crack density parameter exponentially decrease with increasing axial pressure; (3) there is a linear positive correlation between the ratio of rock porosity to crack density parameter and the ratio of crack thickness to crack length. (4) the relationship between Vp and Vs in each compression test can be fitted to the linear equation Vp=a*Vs+b; for all different samples of NR170143, the ratios (M) of Vp to Vs ranges from 1.35 to 1.85. In summary, the P-V model, P-φ model, φ-ε model and Vp-Vs-φ model can intuitively reflect the relationship among seismic wave velocity, axial pressure and rock porosity
Analytical solution and numerical verification for a pressure-relief method of circular tunnel
This paper presents an elastic analytical solution to a circular tunnel with releasing slots at high stress areas near the hole by using a conformal mapping method and the complex variable theory. Compared to the original stress distribution around the circular hole, the releasing effect on elastic stresses is evaluated. After grooving slots, low stress area is generated where the high stress concentration is located. This is agreeable with what was predicted by the finite difference FLAC2D . Besides, displacements are obtained along the periphery of the released hole and are in accordance with those of FLAC2D . In addition to the intersection of the mapping contour, the influences of the sampling points distribution, series number in mapping function, and slot shape are discussed. It is inevitable that the mapping accuracies for the slot and the circle cannot be satisfied at the same time The mapping effect on the circle has to be considered primarily since the stress distribution around the circle is much more significant than the tunnel stability. The analytical solution can be available and fast method of estimating the releasing effect of the application on the tunnel without rock parameters
Characterization of the duck enteritis virus UL55 protein
<p>Abstract</p> <p>Background</p> <p>Characteration of the newly identified duck enteritis virus UL55 gene product has not been reported yet. Knowledge of the protein UL55 can provide useful insights about its function.</p> <p>Results</p> <p>The newly identified duck enteritis virus UL55 gene was about 561 bp, it was amplified and digested for construction of a recombinant plasmid pET32a(+)/UL55 for expression in Escherichia coli. SDS-PAGE analysis revealed the recombinant protein UL55(pUL55) was overexpressed in Escherichia coli BL21 host cells after induction by 0.2 mM IPTG at 37°C for 4 h and aggregated as inclusion bodies. The denatured protein about 40 KDa named pUL55 was purified by washing five times, and used to immune rabbits for preparation of polyclonal antibody. The prepared polyclonal antibody against pUL55 was detected and determined by Agar immundiffusion and Neutralization test. The results of Wstern blotting assay and intracellular analysis revealed that pUL55 was expressed most abundantly during the late phase of replication and mainly distributed in cytoplasm in duck enteritis virus infected cells.</p> <p>Conclusions</p> <p>In this study, the duck enteritis virus UL55 protein was successfully expressed in prokaryotic expression system. Besides, we have prepared the polyclonal antibody against recombinant prtein UL55, and characterized some properties of the duck enteritis virus UL55 protein for the first time. The research will be useful for further functional analysis of this gene.</p
Characterization of duck enteritis virus UL53 gene and glycoprotein K
<p>Abstract</p> <p>Background</p> <p>Most of the previous research work had focused on the epidemiology and prevention of duck enteritis virus (DEV). Whilst with the development of protocols in molecular biology, nowadays more and more information about the genes of DEV was reported. But little information about DEV UL53 gene and glycoprotein K(gK) was known except our reported data.</p> <p>Results</p> <p>In our paper, the fluorescent quantitative real-time PCR(FQ-RT-PCR) assay and nucleic acid inhibition test were used to study the transcription characteristic of the DEV UL53 gene. Except detecting the mRNA of DEV UL53 gene, the product gK encoded by UL53 gene was detected through the expression kinetics of UL53 gene by the purified rabbit anti-UL53 protein polyclonal antibodies. Western-blotting and indirect immunofluorescence assays were used to detect gK. From the results of these experiments, the UL53 gene and gK were respectively identified as a late gene and a really late protein. On the other hand, the indirect immunofluorescence assay provided another information that the intracellular localization of DEV gK was mainly distributed in cytoplasm.</p> <p>Conclusions</p> <p>By way of conclusions, we conceded that DEV UL53 gene is a really late gene, which is coincident with properties of UL53 homologs from other herpesvirus, such as ILTV(Infectious Laryngotracheitis virus) and HSV-1(Herpes simplex virus type 1). The properties of intracellular localization about gK protein provided a foundation for further functional analysis and further studies will be focused on constructing of the UL53 gene DEV mutant.</p
Numerical Investigation of the Dynamic Responses and Damage of Linings Subjected to Violent Gas Explosions inside Highway Tunnels
The linings of structures suffer severe damage when subjected to internal explosions, which cause numerous casualties and incalculable economic losses. In this paper, a violent gas explosion that occurred inside a highway tunnel in the city of Chengdu, China, is studied through numerical simulations. The evaluated energy of the gas explosion was equivalent to 2428.9 kg of TNT. A fully coupled numerical model consisting of five parts is established with dimensions consistent with the real prototype dimensions and by considering fluid-structure interaction (FSI) effects. Then, a detailed modelling process is presented and validated through a comparison with empirical formulas. This paper investigates the strength and propagation characteristics of a blast shock wave inside the tunnel, and both the effective stresses and dynamic responses of the lining are analysed under the blast impact loading. The damage mechanism is studied, and the evolution of the lining damage is reproduced, the results of which show good agreement with the actual conditions. Moreover, in terms of the responses and damage of the lining, the fully coupled blast loading model has obvious advantages in comparison with the simplified blast loading model. Furthermore, the damage assessment of the lining conducted using the single degree of freedom (SDOF) method agrees well with the results of the numerical simulation and site investigations. The comprehensive numerical simulation technique used in the present paper and its results could represent valuable references for future research on violent explosions within tunnels or very large underground structures and provide relevant information for the blast-resistant design of such structures
Review of the Relationships between Crack Initiation Stress, Mode I Fracture Toughness and Tensile Strength of Geo-Materials
It has been accepted that, in geo-materials, almost all the cracks forming at final failure in the tension test and those occurring at the crack initiation (CI) and crack propagation stages in the compression test are tensile cracks. Because of this, tensile strength is attracting more attention. Compared with the experiment for obtaining tensile strength, the results obtained from a CI stress experiment are inaccurate for the subjective judgments of the user, and the results obtained from the fracture toughness test show a rather large variation of 30–50%. A review was conducted to determine the relationships among CI stress, Mode I fracture toughness, and tensile strength from the view of the failure mechanism and the data gathered from the available literature. It was found that CI stress has a linear relationship with Brazilian tensile strength with the linear coefficient of 0.075, and the linear coefficient between Mode I fracture toughness and tensile strength is in the range of 0.1–0.15, although both correlation coefficients are at a low level. The relationships can be the basis for preliminary design purposes and for rock classification and characterization. It is suggested that the shape of the sample for testing should be consistent and the methods for obtaining each property should be standardized, and more data are needed for further study
Fluidization Analysis of Thickening in the Deep Cone for Cemented Paste Backfill
Cemented paste backfill (CPB) can effectively eliminate the risk of dam break in goaf and tailings pond which used tailings waste. Deep cone thickener (DCT) is an efficient machine for the system of paste preparation, and the concentration of slurry at the bottom is high and distributed unevenly, which will cause too much partial resistance and failure of thickener. Focusing on the above problems, fluidization design was conducted by using the fluidization theory. The delivery law of flocs was analyzed, and the isobaric surface was obtained. The equation of pressure and critical velocity of the ideal fluidized bed was acquired by analyzing the relationship between pressure and critical velocity. Based on the characteristics of tailings and distribution of the bonding zone, the arrangement, number, and working mode of spray nozzles were reformed. It is verified that the failure time of thickener decreased from 14 hours to 1 hour and the range of concentration increased from 74%∼78% to 78%∼80%, which improved the stability and reliability of DCT. The depth thickening mechanism is obtained, and the thickening method has been improved which provides a theoretical basis for the effective preparation of paste
Effect of thermal treatment on microcracking characteristics of granite under tensile condition based on bonded-particle model and moment tensor
Abstract It is known that the heterogeneity caused by thermally induced micro-cracks and thermal stress can affect the mechanical behavior of granite. The laboratory-scale tests have the intrinsic limitation of non-repeatability and lack of effective methods to characterize the interaction effect between thermal micro-cracks and thermal stresses. In this study, we demonstrate how advancements in particle bonded model and moment tensor can help better understand the roles of high temperature in weakening granite and thermally induced cracking process in Brazilian test. Our results show that the types of micro-cracks (intergranular, intragranular, and transcrystalline ones) are related to their thermal expansion coefficients of mineralogical compositions. The intergranular tensile micro-cracks are predominant during the heating and heating–cooling processes. An obvious weakening of granite and non-central initiation is associated with the heterogeneity caused by the thermal damage and thermal stress. We also quantitatively evaluate the thermal damage based on orientation distribution, b-value, and nature of the sources, which gives a new microcracking perspective on tensile characteristics subjected to high temperature