14 research outputs found

    Chiral Anion Phase Transfer of Aryldiazonium Cations: An Enantioselective Synthesis of C3‐Diazenated Pyrroloindolines

    No full text
    Herein is reported the first asymmetric utilization of aryldiazonium cations as a source of electrophilic nitrogen. This is achieved through a chiral anion phase-transfer pyrroloindolinization reaction that forms C3-diazenated pyrroloindolines from simple tryptamines and aryldiazonium tetrafluoroborates. The title compounds are obtained in up to 99% yield and 96% ee. The air- and water-tolerant reaction allows electronic and steric diversity of the aryldiazonium electrophile and the tryptamine core

    Asymmetric Cross-Dehydrogenative Coupling Enabled by the Design and Application of Chiral Triazole-Containing Phosphoric Acids

    No full text
    This report describes the development of an enantioselective C–N bond-forming reaction to produce 1,2,3,4-tetrahydroisoquinoline-derived cyclic aminals catalyzed by chiral phosphate anions. Central to the success of this goal was the design of a library of 3,3′-triazolyl BINOL-derived phosphoric acids capable of forming attractive hydrogen-bonding interactions with the peptide-like substrate. We envision this work will offer an alternative to the conventional strategy of increasing catalyst steric bulk to improve enantioselectivity with BINOL-derived phosphoric acids
    corecore