193 research outputs found

    Zentropy Theory for Positive and Negative Thermal Expansions

    Full text link
    It has been observed in both natural and man-made materials that volume sometimes decreases with increasing temperature. Though mechanistic understanding has been gained for some individual materials, a general answer to the question "Why does volume sometimes decrease with the increase of temperature?" remains lacking. Based on the thermodynamic relation that the derivative of volume with respect to temperature, i.e., thermal expansion, is equal to the negative derivative of entropy with respect to pressure, we developed a general theory in terms of multiscale entropy to understand and predict the change of volume as a function of temperature, which is termed as zentropy theory in the present work. It is shown that a phase at high temperatures is a statistical representation of the ground-state stable and multiple nonground-state metastable configurations. It is demonstrated that when the volumes of the major nonground-state configurations are smaller than that of the ground-state configuration, the volume of the phase may decrease with the increase of temperature in certain ranges of temperature-pressure combinations, depicting the negative divergency of thermal expansion at the critical point. As examples, positive and negative divergencies of thermal expansion are predicted at the critical points of Ce and Fe3Pt, respectively, along with the temperature and pressure ranges for abnormally positive and negative thermal expansion. The authors believe that the zentropy theory is applicable to predict anomalies of other physical properties of phases because the change of entropy drives the responses of a system to external stimuli

    Parameter-free prediction of phase transition in PbTiO3 through combination of quantum mechanics and statistical mechanics

    Full text link
    Thermodynamics of ferroelectric materials and their ferroelectric to paraelectric (FE-PE) transitions including those in PbTiO3 is commonly described by the phenomenological Landau theory and more recently by effective Hamiltonian and various potentials, all with model parameters fitted to experimental or theoretical data. Here we show that the zentropy theory, which considers the total entropy of a system as a weighted sum of entropies of configurations that the system may experience and the statistical entropy among the configurations, can predict the FE-PE transition without fitting parameters. For PbTiO3, the configurations are identified as the FE configurations with 90- or 180-degree domain walls in addition to the ground state of the FE configuration without domain wall. With the domain wall energies predicted from first-principles calculations based on the density functional theory in the literature as the only inputs, the FE-PE transition for PbTiO3 is predicted showing remarkable agreement with experiments, unveiling the microscopic fundamentals of the transition

    Predicting hydrogen embrittlement of stainless steels using physics-based machine learning

    Get PDF
    Please click Additional Files below to see the full abstrac

    Lorenz Number and Electronic Thermoelectric Figure of Merit: Thermodynamics and Direct DFT Calculations

    Full text link
    The Lorenz number (L) contained in the Wiedemann-Franz law represents the ratio of two kinetic parameters of electronic charge carriers: the electronic contribution to the thermal conductivity (K_el) and the electrical conductivity (sigma), , and can be expressed as LT=K_el/sigma where T is temperature. We demonstrate that the Lorenz number simply equals to the ratio of two thermodynamic quantities: the electronic heat capacity (c_el) and the electrochemical capacitance (c_N) through LT=c_el/c_N , a purely thermodynamic quantity, and thus it can be calculated solely based on the electron density of states of a material. It is shown that our thermodynamic formulation for the Lorenz number leads to: i) the well-known Sommerfeld value L=pi^2/3(k_B/e)^2 at the low temperature limit, ii) the Drude value L=3/2(k_B/e)^2 at the high temperature limit with the free electron gas model, and iii) possible higher values than the Sommerfeld limit for semiconductors. It is also demonstrated that the purely electronic contribution to the thermoelectric figure-of-merit can be directly computed using high-throughput DFT calculations without resorting to the computationally more expensive Boltzmann transport theory to the electronic thermal conductivity and electrical conductivity

    DFTTK: Density Functional Theory Tool Kit for High-throughput Calculations of Thermodynamic Properties at Finite Temperatures

    Full text link
    In this work, we present a software package in Python for high-throughput first-principles calculations of thermodynamic properties at finite temperatures, which we refer to as DFTTK (Density Functional Theory Tool Kit). DFTTK is based on the atomate package and integrates our experiences in the last decades on the development of theoretical methods and computational software. It includes task submissions on all major operating systems and task execution on high-performance computing environments. The distribution of the DFTTK package comes with examples of calculations of phonon density of states, heat capacity, entropy, enthalpy, and free energy under the quasi-harmonic phonon scheme for the stoichiometric phases of Al, Ni, Al3Ni, AlNi, AlNi3, Al3Ni4, and Al3Ni5, and the fcc solution phases treated using the special quasirandom structures at the compositions of Al3Ni, AlNi, and AlNi3.Comment: 49 pages, 18 figure
    corecore