3 research outputs found

    Additional file 2: Figure S2. of Generation of special autosomal dominant polycystic kidney disease iPSCs with the capability of functional kidney-like cell differentiation

    No full text
    The Sanger sequencing analysis for PKD in a Chinese ADPKD family. (a): The novel missense mutation c.17 G > A, p.Arg6His in PKD2 was predicted by three program. (b): The list of all ten persons analyzed for the mutations. (c): The real sequencing pictures of all ten individuals in this family. (JPG 4280 kb

    Additional file 1: Figure S1. of Generation of special autosomal dominant polycystic kidney disease iPSCs with the capability of functional kidney-like cell differentiation

    No full text
    The additional characterization analysis for ADPKD-iPSC and KLCs. (a): The timeline and culture conditions of induction of fibroblasts to iPSCs. Lower panel; phase contrast microscopy showing each of the three major steps. Bar = 100um. (b): AP staining for stemness of stem cells in iPSC lines. Bar = 100um. (c): Immunofluorescence photomicrographs showing primary cilia (arrow head) in KCLs were generated from iPSCs. Bar = 5um. (d): Water transportation assays were carried out between HK2 positive cells and KCLs. Data are represented as mean ± standard deviation from three independent sets of experiments. (e): The podocyte was used as a positive control and absorbed rhodamine-albumin. Bar = 25um. (JPG 1230 kb

    Additional file 3: Figure S3. of Generation of special autosomal dominant polycystic kidney disease iPSCs with the capability of functional kidney-like cell differentiation

    No full text
    The comparative genomic hybridization (CGH) microarray analysis for PKD in a Chinese ADPKD family. (a): Representative image of CGH analyses of the PKD1 and PKD2 genes in patient TSB and healthy TSG. (b): qPCR verification of all eleven variants detected by CGH microarray in patient TSB and healthy TSG. Shown are the averages of three independent experiments. (JPG 3730 kb
    corecore