6 research outputs found

    Synthesis and characterization of water soluble sugar-capped metal sulphide semiconductor nanoparticles and their toxicity

    Get PDF
    Ph. D., Faculty of Science, University of the Witwatersrand, 2011Different cadmium, cobalt and zinc complexes of substituted thioureas, dithiocarbamates and thiuram di/monosulfides were synthesized using ethanol or water as solvents. The synthesis of dithiocarbamates complexes were performed at room temperature while the rest were refluxed at 70 oC. The complexes were easy to synthesize, of low cost and stable in air and were obtained in good yields. The complexes were characterized using various instruments, such as infrared (FT-IR) and proton nuclear magnetic resonance (1H NMR) spectroscopy, elemental analyzer, thermogravimetric analysis (TGA) and X-ray crystallography. The complexes were found to coordinate the ligands through sulphur atom, instead of nitrogen atom. This was concluded after shifts to higher or lower wavenumbers were observed from the infrared spectra of the complexes as compared to their free ligands. The 1H NMR also depicted formation of the complexes, with complexes peaks shifting to downfield as compared to the free ligands. There were also signs of broad NH peaks especially for substituted thiourea complexes. The crystals grown from complex II (diphenylthiourea cadmium complex) depicted a tetrahedral geometry, with two sulphur and two chlorine atoms binding to the central atom which is cadmium. The easily synthesized complexes were thermolysed in HDA, TOPO or a mixture of the two to form metal sulphide nanoparticles. The role of the above capping agents or ligands was to control particles growth and prevent them from aggregation. A single source precursor route was employed in synthesizing hydrophobic semiconductor nanoparticles, which are also known as (QDs) quantum dots. Various shapes, which are rods (mono-, bi- and tripods), spheres and hexagonal were revealed through transmission electron microscope (TEM). The sizes of these particles ranged from 1 to 12 nm in diameter. Other instruments used for characterising the as-synthesized semiconductor nanoparticles include X-ray diffractometer (XRD), UV-Visible and Photoluminescence spectroscopy. The optical properties of the particles as determined by the UV-Visible spectroscopy revealed some differences as compared to the bulk materials. All the absorption spectra were blue shifted to the bulk materials signifying finite size of the particles. The XRD peaks observed were broad as compared to the bulk ones, which also signified small particles size. Two phases, which are hexagonal and cubic, were revealed from the XRD. viii The hydrophobic semiconductor nanoparticles or quantum dots synthesized were then transferred into water soluble using ligand exchange method. The chloroform and pyridine routes were used to synthesize hydrophilic semiconductor nanoparticles, with pyridine route being preferred. The shape and size of the particles were not influenced by the transfer into water soluble since the experiments were performed at room temperature. This was confirmed by TEM analysis. The capping agents used after displacing water insoluble capping agents were sugars, which were soluble in water. The XRD pattern of the semiconductor nanoparticles/QDs (CdS) capped by sugars after ligand exchange through pyridine yielded multiple peaks which were difficult to assign. The attempt to employ ligand exchange method in transferring hydrophobic CoxSy and ZnS nanoparticles to hydrophilic CoxSy and ZnS nanoparticles proved unsuccessful. When the materials were centrifuged after the sugars were introduced as capping agents, some solid material settled at the bottom, with some floating on top of the solution. This was an indication that the materials were not miscible. The hydrophilic CdS, CoxSy and ZnS nanoparticles were also synthesized using direct method. In this method, the metal sources and capping (sugars) were dissolved in ethylene glycol at 100 oC. The sulphur sources were also dissolved separately in the same solvent. Upon completion, the latter solution was added to the former one. The particles were grown at 160 oC for an hour with ethylene glycol as a solvent. The morphology of the particles dominated through this method was spherical-like in shape. The crystallinity of CdS and ZnS nanoparticles depicted hexagonal and cubic phases depending on the complexes used. The XRD indicated the armophous nature of the cobalt sulphide nanoparticles, irrespective of the precursor used. Due to the toxicity problem of the quantum dots, especially CdS, the water soluble CdS capped by glucuronic acid, glucose and sucrose after ligand exchange were chosen for that study. However, results showed that the CdS used were not toxic. It was measured or deduced by checking the viability which remained above 90%. Add a bit of deductions about toxicity study here, just some of the general trends

    Biosensors: Design, Development and Applications

    Get PDF
    The ability to detect even the slightest physiological change in the human body with high sensitivity and accurately monitor processes that impact human nature and their surroundings has led to an immense improvement in the quality of life. Biosensors continue to play a critical role across a myriad of fields including biomedical diagnosis, monitoring of treatment and disease progression, drug discovery, food control and environmental monitoring. These novel analytical tools are small devices that use a biological recognition system to investigate or detect molecules. This chapter covers the design and development of biosensors, beginning with a brief historical overview. The working principle and important characteristics or attributes of biosensors will also be addressed. Furthermore, the basic types of biosensors and the general applications of these biosensors in various fields will be discussed

    Pyridine carboxamide and pyrazole palladium(II) complexes as catalyst precursors for phenylacetylene polymerization

    Get PDF
    Magister Scientiae - MScThe objectives of this project were to synthesize and characterise pyridine carboxamide ligands and their palladium complexes and investigate their catalytic activity in the polymerization process of phenylactylene.South Afric

    Analysis of the Interaction of Surfactants Oleic Acid and Oleylamine with Iron Oxide Nanoparticles through Molecular Mechanics Modeling

    No full text
    The interface interactions between surfactants oleic acid and oleylamine and magnetic nanoparticles are studied via molecular mechanics and dynamics. Mixtures of these two surfactants are widely advocated in the chemical synthesis of nanoparticles. However, the exact dynamic mechanism remains unclear. Here we report, for the first time, a comprehensive qualitative model showing the importance of acid–base complex formation between oleic acid and oleylamine as well as the presence of free protons in the engineering of nanoparticles of specific shapes and sizes. We show why critical parameters such as surfactant concentration may modify iron oxide nanoparticle shape and size and how this can be understood in the light of acid–base complex pair formation. We report on the influence these parameters have on both the in situ nanoparticle surface charge and zeta potential. Transmission electron microscopy (TEM), FTIR, and pH studies are used to confirm the validity of the calculated binding energies and number of acid–base pairs

    Synthesis, Characterization, and Electrochemical Evaluation of Copper Sulfide Nanoparticles and Their Application for Non-Enzymatic Glucose Detection in Blood Samples

    No full text
    Glutathione-capped copper sulfide (CuxSy) nanoparticles with two different average sizes were successfully achieved by using a simple reduction process that involves only changing the reaction temperature. Temperature-induced changes in the size of CuxSy nanoparticles resulted in particles with different optical, morphological, and electrochemical properties. The dependence of electrochemical sensing properties on the sizes of CuxSy nanoparticles was studied by using voltammetric and amperometric techniques. The spherical CuxSy nanoparticles with the average particle size of 25 ± 0.6 nm were found to be highly conductive as compared to CuxSy nanoparticles with the average particle size of 4.5 ± 0.2 nm. The spherical CuxSy nanoparticles exhibited a low bandgap energy (Eg) of 1.87 eV, resulting in superior electrochemical properties and improved electron transfer during glucose detection. The sensor showed a very good electrocatalytic activity toward glucose molecules in the presence of interference species such as uric acid (UA), ascorbic acid (AA), fructose, sodium chloride, and sucrose. These species are often present in low concentrations in the blood. The sensor demonstrated an excellent dynamic linear range between 0.2 to 16 mM, detection limit of 0.2 mM, and sensitivity of 0.013 mA/mM. The applicability of the developed sensor for real field determination of glucose was demonstrated by use of spiked blood samples, which confirmed that the developed sensor had great potential for real analysis of blood glucose levels

    Synthesis, Characterization, and Electrochemical Evaluation of Copper Sulfide Nanoparticles and Their Application for Non-Enzymatic Glucose Detection in Blood Samples

    No full text
    Glutathione-capped copper sulfide (CuxSy) nanoparticles with two different average sizes were successfully achieved by using a simple reduction process that involves only changing the reaction temperature. Temperature-induced changes in the size of CuxSy nanoparticles resulted in particles with different optical, morphological, and electrochemical properties. The dependence of electrochemical sensing properties on the sizes of CuxSy nanoparticles was studied by using voltammetric and amperometric techniques. The spherical CuxSy nanoparticles with the average particle size of 25 ± 0.6 nm were found to be highly conductive as compared to CuxSy nanoparticles with the average particle size of 4.5 ± 0.2 nm. The spherical CuxSy nanoparticles exhibited a low bandgap energy (Eg) of 1.87 eV, resulting in superior electrochemical properties and improved electron transfer during glucose detection. The sensor showed a very good electrocatalytic activity toward glucose molecules in the presence of interference species such as uric acid (UA), ascorbic acid (AA), fructose, sodium chloride, and sucrose. These species are often present in low concentrations in the blood. The sensor demonstrated an excellent dynamic linear range between 0.2 to 16 mM, detection limit of 0.2 mM, and sensitivity of 0.013 mA/mM. The applicability of the developed sensor for real field determination of glucose was demonstrated by use of spiked blood samples, which confirmed that the developed sensor had great potential for real analysis of blood glucose levels
    corecore