1,639 research outputs found

    Geophysical parameters from the analysis of laser ranging to starlette

    Get PDF
    Starlette Satellite Laser Ranging (SLR) data were used, along with several other satellite data sets, for the solution of a preliminary gravity field model for TOPEX, PTGF1. A further improvement in the earth gravity model was accomplished using data collected by 12 satellites to solve another preliminary gravity model for TOPEX, designated PTGF2. The solution for the Earth Rotation Parameter (ERP) was derived from the analysis of SLR data to Starlette during the MERIT Campaign. Starlette orbits in 1976 and 1983 were analyzed for the mapping of the tidal response of the earth. Publications and conference presentations pertinent to research are listed

    Altimeter measurements for the determination of the Earth's gravity field

    Get PDF
    Progress in the following areas is described: refining altimeter and altimeter crossover measurement models for precise orbit determination and for the solution of the earth's gravity field; performing experiments using altimeter data for the improvement of precise satellite ephemerides; and analyzing an optimal relative data weighting algorithm to combine various data types in the solution of the gravity field

    Geophysical parameters from the analysis of laser ranging to Starlette

    Get PDF
    The results of geodynamic research from the analysis of satellite laser ranging data to Starlette are summarized. The time period of the investigation was from 15 Mar. 1986 to 31 Dec. 1991. As a result of the Starlette research, a comprehensive 16-year Starlette data set spanning the time period from 17 Mar. 1975 through 31 Dec. 1990, was produced. This data set represents the longest geophysical time series from any geodetic satellite and is invaluable for research in long-term geodynamics. A low degree and order ocean tide solution determined from Starlette has good overall agreement with other satellite and oceanographic tide solutions. The observed lunar deceleration is -24.7 +/- 0.6 arcsecond/century(exp 2), which agrees well with other studies. The estimated value of J2 is (-2.5 +/- 0.3) x 10(exp -11) yr(exp -1), assuming there are no variations in higher degree zonals and that the 18.6-year tide is fixed at an equilibrium value. The yearly fluctuations in the values for S(sub a) and S(sub sa) tides determined by the 16-year Starlette data are found to be associated with changes in the Earth's second degree zonal harmonic caused primarily by meteorological excitation. The mean values for the amplitude of S(sub a) and S(sub sa) variations in J2 are 32.3 x 10(exp -11) and 19.5 x 10(exp -11), respectively; while the rms about the mean values are 4.1 x 10(exp -11) and 6.3(10)(exp -11), respectively. The annual delta(J2) is in good agreement with the value obtained from the combined effects of air mass redistribution without the oceanic inverted-barometer effects and hydrological change. The annual delta(J3) values have much larger disagreements. Approximately 90 percent of the observed annual variation from Starlette is attributed to the meteorological mass redistribution occurring near the Earth's surface

    Altimeter measurements for the determination of the Earth's gravity field

    Get PDF
    The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation

    Synthetic quorum sensing in model microcapsule colonies

    Get PDF
    Biological quorum sensing refers to the ability of cells to gauge their population density and collectively initiate a new behavior once a critical density is reached. Designing synthetic materials systems that exhibit quorum sensing-like behavior could enable the fabrication of devices with both self-recognition and self-regulating functionality. Herein, we develop models for a colony of synthetic microcapsules that communicate by producing and releasing signaling molecules. Production of the chemicals is regulated by a biomimetic negative feedback loop, the "repressilator" network. Through theory and simulation, we show that the chemical behavior of such capsules is sensitive to both the density and number of capsules in the colony. For example, decreasing the spacing between a fixed number of capsules can trigger a transition in chemical activity from the steady, repressed state to large-amplitude oscillations in chemical production. Alternatively, for a fixed density, an increase in the number of capsules in the colony can also promote a transition into the oscillatory state. This configuration-dependent behavior of the capsule colony exemplifies quorum-sensing behavior. Using our theoretical model, we predict the transitions from the steady state to oscillatory behavior as a function of the colony size and capsule density.U.S. Department of Energy: DE-SC000098

    Fluctuation-induced dynamics of multiphase liquid jets with ultra-low interfacial tension

    Get PDF
    postprin

    An improved model for the Earth's gravity field

    Get PDF
    An improved model for the Earth's gravity field, TEG-1, was determined using data sets from fourteen satellites, spanning the inclination ranges from 15 to 115 deg, and global surface gravity anomaly data. The satellite measurements include laser ranging data, Doppler range-rate data, and satellite-to-ocean radar altimeter data measurements, which include the direct height measurement and the differenced measurements at ground track crossings (crossover measurements). Also determined was another gravity field model, TEG-1S, which included all the data sets in TEG-1 with the exception of direct altimeter data. The effort has included an intense scrutiny of the gravity field solution methodology. The estimated parameters included geopotential coefficients complete to degree and order 50 with selected higher order coefficients, ocean and solid Earth tide parameters, Doppler tracking station coordinates and the quasi-stationary sea surface topography. Extensive error analysis and calibration of the formal covariance matrix indicate that the gravity field model is a significant improvement over previous models and can be used for general applications in geodesy
    corecore