2,170 research outputs found
X-ray spectroscopic observations and modeling of supernova remnants
The X-ray observations of young remnants and their theoretical interpretation are described. A number of questions concerning the nature of the blast wave interaction with the interstellar gas and grains and of atomic processes in these hot plasmas are considered. It is concluded that future X-ray spectrometers with high collecting area, moderate spectral resolution and good spatial resolution can make important contributions to the understanding of supernova remnants in the Milky Way and neighboring galaxies and of their role in the global chemical and dynamical evolution of the interstellar medium
IUE/IRAS studies of metal abundances and infrared cirrus
A survey is reported of interstellar densities, abundances, and cloud structure in the Galaxy, using the IUE and IRAS satellites. Heavy element depletions are discussed along with their correlations with mean density, reddening, and galactic location. Interesting correlations between the Fe/Si abundance ratio and the infrared diffuse cirrus is also reported, which may provide information on the history and formation of grains in the galactic halo
The Local Ly-alpha Forest IV: STIS G140M Spectra and Results on the Distribution and Baryon Content of HI Absorbers
We present HST STIS/G140M spectra of 15 extragalactic targets, which we
combine with GHRS/G160M data to examine the statistical properties of the low-z
Ly-alpha forest. We evaluate the physical properties of these Ly-alpha
absorbers and compare them to their high-z counterparts. We determine that the
warm, photoionized IGM contains 29+/-4% of the total baryon inventory at z = 0.
We derive the distribution in column density, N_HI^(1.65+/-0.07) for 12.5 < log
[N_HI] 14.5. The slowing
of the number density evolution of high-W Ly-alpha clouds is not as great as
previously measured, and the break to slower evolution may occur later than
previously suggested (z~1.0 rather than 1.6). We find a 7.2sigma excess in the
two-point correlation function (TPCF) of Ly-alpha absorbers for velocity
separations less than 260 km/s, which is exclusively due to the higher column
density clouds. From our previous result that higher column density Ly-alpha
clouds cluster more strongly with galaxies, this TPCF suggests a physical
difference between the higher and lower column density clouds in our sample.Comment: 71 pages, 6 tables, 26 EPS figures, to appear in ApJ Supplemen
The extent of the local hi halo
Forty-five high-latitude, OB stars have been observed in the Ly alpha and 21 cm lines of HI in an effort to map out the vertical distribution and extent of the local HI halo. The 25 stars for which a reliable HI colum density can be obtained from Ly alpha lie between 60 and 3100 pc from the plane. The principal result is that the total column density of HI at z 1 kpc is, on the average, 5 + or - 3 x 10 the 19th power/sq cm, or 15% of the total sub HI. At relatively low z the data toward some stars suggest a low effective scale height and fairly high average foreground density, while toward others the effective scale height is large and the average density is low. This can be understood as the result of irregularities in the interstellar medium. A model with half of the HI mass in clouds having radii of a few pc and a Gaussian vertical distribution with sigma sub 2 = 135 pc, and half of the mass in an exponential component with a scale height of 500 pc, gives a satisfactory fit to the data. The technique of comparing Ly alpha and 21 cm column densities is also used to discuss the problem of estimating the distance to several possibly subluminous stars
Turbulent mixing layers in the interstellar medium of galaxies
We propose that turbulent mixing layers are common in the interstellar medium (ISM). Injection of kinetic energy into the ISM by supernovae and stellar winds, in combination with density and temperature inhomogeneities, results in shear flows. Such flows will become turbulent due to the high Reynolds number (low viscosity) of the ISM plasma. These turbulent boundary layers will be particularly interesting where the shear flow occurs at boundaries of hot (approximately 10(exp 6) K) and cold or warm (10(exp 2) - 10(exp 4) K) gas. Mixing will occur in such layers producing intermediate-temperature gas at T is approximately equal to 10(exp 5.0) - 10(exp 5.5) that radiates strongly in the optical, ultraviolet, and EUV. We have modeled these layers under the assumptions of rapid mixing down to the atomic level and steady flow. By including the effects of non-equilibrium ionization and self-photoionization of the gas as it cools after mixing, we predict the intensities of numerous optical, infrared, and ultraviolet emission lines, as well as absorption column densities of C 4, N 5, Si 4, and O 6
IUE absorption studies of broad- and narrow-line gas in Seyfert galaxies
The interstellar medium of a galaxy containing an active nucleus may be profoundly affected by the high energy (X-ray, EUV) continuum flux emanating from the central source. The energetic source may photoionize the interstellar medium out to several kiloparsecs, thereby creating a global H II region. The International Ultraviolet Explorer (IUE) satellite has attempted to observe in several Seyfert galaxies (NGC 3516, NGC 4151, NGC 1068, 3C 120) the narrow absorption lines expected from such global H II regions. Instead, in two of the galaxies (NGC 3516, NGC 4151) broad, variable absorption lines at C IV lambda 1550, N V lambda 1240, and Si IV lambda 1400 were found, as well as weaker absorption features at O I lambda 1302 and C II lambda 1335. These features swamp any possible global H II region absorption. Such broad absorption features have previously been observed in IUE data, but their origin is still not well understood
- …