21 research outputs found

    Interaction between electrostatic collisionless shocks generates strong magnetic fields

    Get PDF
    The head-on collision between electrostatic shocks is studied via multi-dimensional particle-in-cell simulations. A strong magnetic field develops after the interaction, which causes the shock velocities to drop significantly. This transverse magnetic field is generated by the Weibel instability, which is driven by pressure anisotropies due to longitudinal electron heating while the shocks approach each other. The possibility to explore the physics underpinning the shock collision in the laboratory with current laser facilities is discussed.info:eu-repo/semantics/publishedVersio

    The Debye-Waller Factor in solid 3He and 4He

    Full text link
    The Debye-Waller factor and the mean-squared displacement from lattice sites for solid 3He and 4He were calculated with Path Integral Monte Carlo at temperatures between 5 K and 35 K, and densities between 38 nm^(-3) and 67 nm^(-3). It was found that the mean-squared displacement exhibits finite-size scaling consistent with a crossover between the quantum and classical limits of N^(-2/3) and N^(-1/3), respectively. The temperature dependence appears to be T^3, different than expected from harmonic theory. An anisotropic k^4 term was also observed in the Debye-Waller factor, indicating the presence of non-Gaussian corrections to the density distribution around lattice sites. Our results, extrapolated to the thermodynamic limit, agree well with recent values from scattering experiments.Comment: 5 figure
    corecore