22 research outputs found

    Metabolism of Polycyclic Aromatic Hydrocarbons by the Wood-Feeding Termite Coptotermes formosanus (Shiraki)

    No full text
    Polycyclic aromatic hydrocarbons (PAHs) are among the most prevalent and persistent pollutants in the environment. In this study, the wood-feeding termite (WFT) Coptotermes formosanus (Shiraki) was studied regarding the potential ability to degrade two selected low-molecular-weight PAHs, phenanthrene and anthracene. Pyrolysis–gas chromatography/mass spectrometry was employed for analysis of in vivo PAH degradation by three gut segments (fore-, mid-, and hindgut) of the WFT. The results revealed the capability of lower termite for PAH metabolism, which started from the foregut and mainly occurred in the midgut region. Remediation of phenanthrene by the termite has been proposed to be initiated via hydroxylation at the C-10 position. Anthracene metabolism first occurred at the C-3, C-5, and C-12 positions with the addition of aldehyde and carbonyl groups. Ring hydroxylation, methoxylation, esterification, carboxylation, and methylation were detected on both the PAHs for ring fission, suggesting the existence of effective PAH modification activity in the alimentary canal of C. formosanus. This new PAH degradation system of the WFT provides new insights for potential technologies for bioremediation of PAH-contaminated soil and sediment based on the related lingolytic enzymes

    A Wireless, Regeneratable Cocaine Sensing Scheme Enabled by Allosteric Regulation of pH Sensitive Aptamers

    No full text
    A key challenge for achieving continuous biosensing with existing technologies is the poor reusability of the biorecognition interface due to the difficulty in the dissociation of analytes from the bioreceptors upon surface saturation. In this work, we introduce a regeneratable biosensing scheme enabled by allosteric regulation of a re-engineered pH sensitive anti-cocaine aptamer. The aptamer can regain its affinity with target analytes due to proton-promoted duplex-to-triplex transition in DNA configuration followed by the release of adsorbed analytes. A Pd/PdHx electrode placed next to the sensor can enable the pH regulation of the local chemical environment via electrochemical reactions. Demonstration of a “flower-shaped”, stretchable, and inductively coupled electronic system with sensing and energy harvesting capabilities provides a promising route to designing wireless devices in biointegrated forms. These advances have the potential for future development of electronic sensing platforms with on-chip regeneration capability for continuous, quantitative, and real-time monitoring of chemical and biological markers

    A Wireless, Regeneratable Cocaine Sensing Scheme Enabled by Allosteric Regulation of pH Sensitive Aptamers

    No full text
    A key challenge for achieving continuous biosensing with existing technologies is the poor reusability of the biorecognition interface due to the difficulty in the dissociation of analytes from the bioreceptors upon surface saturation. In this work, we introduce a regeneratable biosensing scheme enabled by allosteric regulation of a re-engineered pH sensitive anti-cocaine aptamer. The aptamer can regain its affinity with target analytes due to proton-promoted duplex-to-triplex transition in DNA configuration followed by the release of adsorbed analytes. A Pd/PdHx electrode placed next to the sensor can enable the pH regulation of the local chemical environment via electrochemical reactions. Demonstration of a “flower-shaped”, stretchable, and inductively coupled electronic system with sensing and energy harvesting capabilities provides a promising route to designing wireless devices in biointegrated forms. These advances have the potential for future development of electronic sensing platforms with on-chip regeneration capability for continuous, quantitative, and real-time monitoring of chemical and biological markers

    Structural and Thermal Characterization of Wheat Straw Pretreated with Aqueous Ammonia Soaking

    No full text
    Production of renewable fuels and chemicals from lignocellulosic feedstocks requires an efficient pretreatment technology to allow ready access of polysaccharides for cellulolytic enzymes during saccharification. The effect of pretreatment on wheat straw through a low-temperature and low-pressure soaking aqueous ammonia (SAA) process was investigated in this study using Fourier transform infrared (FTIR), pyrolysis–gas chromatography/mass spectroscopy (Py-GC/MS), solid and liquid state nuclear magnetic resonance (NMR), and thermogravimetry/differential thermogravimetry (TG/DTG) to demonstrate the changes in lignin, hemicellulose, and cellulose structure. After treatment of 60 mesh wheat straw particles for 60 h with 28–30% ammonium hydroxide (1:10 solid/liquid) at 50 °C, sugar recovery increased from 14% (untreated) to 67% (SAA treated). The FTIR study revealed a substantial decrease in absorbance of lignin peaks. Solid and liquid state NMR showed minimal lignin structural changes with significant compositional changes. Activation energy of control and pretreated wheat straw was calculated according to the Friedman and ASTM methods and found to be decreased for SAA-treated wheat straw, from 259 to 223 kJ/mol. The SAA treatment was shown to remove significant amounts of lignin without strongly affecting lignin functional groups or structure

    Structural Modification of Lignin and Characterization of Pretreated Wheat Straw by Ozonation

    No full text
    Ozonolysis is potentially an effective method for pretreating lignocellulosic biomass to improve the production of fermentable sugars via enzymatic hydrolysis. Further understanding of the ozonolysis process and identifying specific lignin structural changes are crucial for improving the pretreatment process. Investigation into pretreatment of wheat straw using ozonolysisis is reported in this paper, with special emphasis on selective modification/degradation of lignin subunits. The ozonolysis was performed for 2 h with less than 60 mesh particles in order to achieve maximum lignin oxidation. The results showed that the lignin structure was significantly modified under these conditions, leading to higher sugar recovery of more than 50% which increased from 13.11% to 63.17% corresponding to the control and ozone treated samples, respectively. Moisture content was found to be an important parameter for improving sugar recovery. Ninety percent (w/w) moisture produced the highest sugar recovery. The concentration of acid soluble lignin in the ozone treated sample increased from 4% to 11% after 2 h treatment. NMR analysis revealed that the S2/6 and G2 lignin units in the wheat straw were most prone to oxidation by ozone as the concentration of aromatic units decreased while the carboxylic acids became more abundant. The experimental data suggest the degradation of β-O-4 moieties and aromatic ring opening in lignin subunits. The pyrolysis-gas chromatography/mass spectrometry results revealed that the rate of lignin unit degradation was in the following order: syringyl > guaiacyl > <i>p</i>-hydroxyphenyl. Long ozone exposure resulted in few condensed lignin structure formation. In addition, the formation of condensed units during this process increased the activation energy from ASTM-<i>E</i>, 259.74 kJ/mol; Friedman-<i>E</i>, 270.08 kJ/mol to ASTM-<i>E</i>, 509.29 kJ/mol; Friedman-<i>E</i>, 462.17 kJ/mol. The results provide new information in overcoming lignin barrier for lignocellulose utilization

    MOESM2 of Exploring fatty alcohol-producing capability of Yarrowia lipolytica

    No full text
    Additional file 2: Table S1. Demonstration of growth retardation from fatty alcohol/aldehyde accumulation in 24 h. Table S2. Strains used in this study. Table S3. Primers used in this study
    corecore