9 research outputs found

    DataSheet_1_Genome-wide identification of TPS and TPP genes in cultivated peanut (Arachis hypogaea) and functional characterization of AhTPS9 in response to cold stress.zip

    No full text
    IntroductionTrehalose is vital for plant metabolism, growth, and stress resilience, relying on Trehalose-6-phosphate synthase (TPS) and Trehalose-6-phosphate phosphatase (TPP) genes. Research on these genes in cultivated peanuts (Arachis hypogaea) is limited.MethodsThis study employed bioinformatics to identify and analyze AhTPS and AhTPP genes in cultivated peanuts, with subsequent experimental validation of AhTPS9’s role in cold tolerance.ResultsIn the cultivated peanut genome, a total of 16 AhTPS and 17 AhTPP genes were identified. AhTPS and AhTPP genes were observed in phylogenetic analysis, closely related to wild diploid peanuts, respectively. The evolutionary patterns of AhTPS and AhTPP genes were predominantly characterized by gene segmental duplication events and robust purifying selection. A variety of hormone-responsive and stress-related cis-elements were unveiled in our analysis of cis-regulatory elements. Distinct expression patterns of AhTPS and AhTPP genes across different peanut tissues, developmental stages, and treatments were revealed, suggesting potential roles in growth, development, and stress responses. Under low-temperature stress, qPCR results showcased upregulation in AhTPS genes (AhTPS2-5, AhTPS9-12, AhTPS14, AhTPS15) and AhTPP genes (AhTPP1, AhTPP6, AhTPP11, AhTPP13). Furthermore, AhTPS9, exhibiting the most significant expression difference under cold stress, was obviously induced by cold stress in cultivated peanut, and AhTPS9-overexpression improved the cold tolerance of Arabidopsis by protect the photosynthetic system of plants, and regulates sugar-related metabolites and genes.DiscussionThis comprehensive study lays the groundwork for understanding the roles of AhTPS and AhTPP gene families in trehalose regulation within cultivated peanuts and provides valuable insights into the mechanisms related to cold stress tolerance.</p

    Controlled Growth of Atomically Thin In<sub>2</sub>Se<sub>3</sub> Flakes by van der Waals Epitaxy

    No full text
    The controlled production of high-quality atomically thin III–VI semiconductors poses a challenge for practical applications in electronics, optoelectronics, and energy science. Here, we exploit a controlled synthesis of single- and few-layer In<sub>2</sub>Se<sub>3</sub> flakes on different substrates, such as graphene and mica, by van der Waals epitaxy. The thickness, orientation, nucleation site, and crystal phase of In<sub>2</sub>Se<sub>3</sub> flakes were well-controlled by tuning the growth condition. The obtained In<sub>2</sub>Se<sub>3</sub> flakes exhibit either semiconducting or metallic behavior depending on the crystal structures. Meanwhile, field-effect transistors based on the semiconducting In<sub>2</sub>Se<sub>3</sub> flakes showed an efficient photoresponse. The controlled growth of atomically thin In<sub>2</sub>Se<sub>3</sub> flakes with diverse conductivity and efficient photoresponsivity could lead to new applications in photodetectors and phase change memory devices

    Image_5_Identification of novel B-1 transitional progenitors by B-1 lymphocyte fate-mapping transgenic mouse model Bhlhe41dTomato-Cre.eps

    No full text
    B-1 lymphocytes exhibit specialized roles in host defense against multiple pathogens. Despite the fact that CD19+CD93+B220lo/- B cells have been identified as B-1 progenitors, the definition for B-1 progenitors remains to be elucidated as CD19+CD93+B220+ B cells are capable to give rise to B-1 cells. Given that transcription factor Bhlhe41 is highly and preferentially expressed in B-1 cells and regulates B-1a cell development, we generated a transgenic mouse model, Bhlhe41dTomato-Cre, for fate mapping and functional analysis of B-1 cells. Bhlhe41dTomato-Cre mice efficiently traced Bhlhe41 expression, which was mainly restricted to B-1 cells in B-cell lineage. We showed an efficient and specific Cre-mediated DNA recombination in adult B-1 cells and neonatal B-1 progenitors rather than B-2 cells by flow cytometric analysis of Bhlhe41dTomato-Cre/+Rosa26EYFP mice. Treatment of Bhlhe41dTomato-Cre/+Rosa26iDTR mice with diphtheria toxin revealed a robust efficacy of B-1 cell depletion. Interestingly, using Bhlhe41dTomato-Cre mice, we demonstrated that neonatal B-1 progenitors (CD19+CD93+B220lo/-) expressed Bhlhe41 and were identical to well-defined transitional B-1a progenitors (CD19+CD93+B220lo/-CD5+), which only gave rise to peritoneal B-1a cells. Moreover, we identified a novel population of neonatal splenic CD19hidTomato+B220hiCD43loCD5lo B cells, which differentiated to peritoneal B-1a and B-1b cells. Bhlhe41 deficiency impaired the balance between CD19hidTomato+B220lo/-CD5hi and CD19hidTomato+B220hiCD5lo cells. Hence, we identified neonatal CD19hidTomato+B220hiCD43loCD5lo B cells as novel transitional B-1 progenitors. Bhlhe41dTomato-Cre/+ mouse can be used for fate mapping and functional studies of B-1 cells in host-immune responses.</p

    Image_3_Identification of novel B-1 transitional progenitors by B-1 lymphocyte fate-mapping transgenic mouse model Bhlhe41dTomato-Cre.tif

    No full text
    B-1 lymphocytes exhibit specialized roles in host defense against multiple pathogens. Despite the fact that CD19+CD93+B220lo/- B cells have been identified as B-1 progenitors, the definition for B-1 progenitors remains to be elucidated as CD19+CD93+B220+ B cells are capable to give rise to B-1 cells. Given that transcription factor Bhlhe41 is highly and preferentially expressed in B-1 cells and regulates B-1a cell development, we generated a transgenic mouse model, Bhlhe41dTomato-Cre, for fate mapping and functional analysis of B-1 cells. Bhlhe41dTomato-Cre mice efficiently traced Bhlhe41 expression, which was mainly restricted to B-1 cells in B-cell lineage. We showed an efficient and specific Cre-mediated DNA recombination in adult B-1 cells and neonatal B-1 progenitors rather than B-2 cells by flow cytometric analysis of Bhlhe41dTomato-Cre/+Rosa26EYFP mice. Treatment of Bhlhe41dTomato-Cre/+Rosa26iDTR mice with diphtheria toxin revealed a robust efficacy of B-1 cell depletion. Interestingly, using Bhlhe41dTomato-Cre mice, we demonstrated that neonatal B-1 progenitors (CD19+CD93+B220lo/-) expressed Bhlhe41 and were identical to well-defined transitional B-1a progenitors (CD19+CD93+B220lo/-CD5+), which only gave rise to peritoneal B-1a cells. Moreover, we identified a novel population of neonatal splenic CD19hidTomato+B220hiCD43loCD5lo B cells, which differentiated to peritoneal B-1a and B-1b cells. Bhlhe41 deficiency impaired the balance between CD19hidTomato+B220lo/-CD5hi and CD19hidTomato+B220hiCD5lo cells. Hence, we identified neonatal CD19hidTomato+B220hiCD43loCD5lo B cells as novel transitional B-1 progenitors. Bhlhe41dTomato-Cre/+ mouse can be used for fate mapping and functional studies of B-1 cells in host-immune responses.</p

    Image_1_Identification of novel B-1 transitional progenitors by B-1 lymphocyte fate-mapping transgenic mouse model Bhlhe41dTomato-Cre.eps

    No full text
    B-1 lymphocytes exhibit specialized roles in host defense against multiple pathogens. Despite the fact that CD19+CD93+B220lo/- B cells have been identified as B-1 progenitors, the definition for B-1 progenitors remains to be elucidated as CD19+CD93+B220+ B cells are capable to give rise to B-1 cells. Given that transcription factor Bhlhe41 is highly and preferentially expressed in B-1 cells and regulates B-1a cell development, we generated a transgenic mouse model, Bhlhe41dTomato-Cre, for fate mapping and functional analysis of B-1 cells. Bhlhe41dTomato-Cre mice efficiently traced Bhlhe41 expression, which was mainly restricted to B-1 cells in B-cell lineage. We showed an efficient and specific Cre-mediated DNA recombination in adult B-1 cells and neonatal B-1 progenitors rather than B-2 cells by flow cytometric analysis of Bhlhe41dTomato-Cre/+Rosa26EYFP mice. Treatment of Bhlhe41dTomato-Cre/+Rosa26iDTR mice with diphtheria toxin revealed a robust efficacy of B-1 cell depletion. Interestingly, using Bhlhe41dTomato-Cre mice, we demonstrated that neonatal B-1 progenitors (CD19+CD93+B220lo/-) expressed Bhlhe41 and were identical to well-defined transitional B-1a progenitors (CD19+CD93+B220lo/-CD5+), which only gave rise to peritoneal B-1a cells. Moreover, we identified a novel population of neonatal splenic CD19hidTomato+B220hiCD43loCD5lo B cells, which differentiated to peritoneal B-1a and B-1b cells. Bhlhe41 deficiency impaired the balance between CD19hidTomato+B220lo/-CD5hi and CD19hidTomato+B220hiCD5lo cells. Hence, we identified neonatal CD19hidTomato+B220hiCD43loCD5lo B cells as novel transitional B-1 progenitors. Bhlhe41dTomato-Cre/+ mouse can be used for fate mapping and functional studies of B-1 cells in host-immune responses.</p

    Image_4_Identification of novel B-1 transitional progenitors by B-1 lymphocyte fate-mapping transgenic mouse model Bhlhe41dTomato-Cre.eps

    No full text
    B-1 lymphocytes exhibit specialized roles in host defense against multiple pathogens. Despite the fact that CD19+CD93+B220lo/- B cells have been identified as B-1 progenitors, the definition for B-1 progenitors remains to be elucidated as CD19+CD93+B220+ B cells are capable to give rise to B-1 cells. Given that transcription factor Bhlhe41 is highly and preferentially expressed in B-1 cells and regulates B-1a cell development, we generated a transgenic mouse model, Bhlhe41dTomato-Cre, for fate mapping and functional analysis of B-1 cells. Bhlhe41dTomato-Cre mice efficiently traced Bhlhe41 expression, which was mainly restricted to B-1 cells in B-cell lineage. We showed an efficient and specific Cre-mediated DNA recombination in adult B-1 cells and neonatal B-1 progenitors rather than B-2 cells by flow cytometric analysis of Bhlhe41dTomato-Cre/+Rosa26EYFP mice. Treatment of Bhlhe41dTomato-Cre/+Rosa26iDTR mice with diphtheria toxin revealed a robust efficacy of B-1 cell depletion. Interestingly, using Bhlhe41dTomato-Cre mice, we demonstrated that neonatal B-1 progenitors (CD19+CD93+B220lo/-) expressed Bhlhe41 and were identical to well-defined transitional B-1a progenitors (CD19+CD93+B220lo/-CD5+), which only gave rise to peritoneal B-1a cells. Moreover, we identified a novel population of neonatal splenic CD19hidTomato+B220hiCD43loCD5lo B cells, which differentiated to peritoneal B-1a and B-1b cells. Bhlhe41 deficiency impaired the balance between CD19hidTomato+B220lo/-CD5hi and CD19hidTomato+B220hiCD5lo cells. Hence, we identified neonatal CD19hidTomato+B220hiCD43loCD5lo B cells as novel transitional B-1 progenitors. Bhlhe41dTomato-Cre/+ mouse can be used for fate mapping and functional studies of B-1 cells in host-immune responses.</p
    corecore