144 research outputs found

    Ethanol production of semi-simultaneous saccharification and fermentation from mixture of cotton gin waste and recycled paper sludge

    Get PDF
    Ethanol production from the steam-exploded mixture of 75% cotton gin waste and 25% recycled paper sludge in various conditions was investigated by semi-simultaneous saccharification and fermentation (SSSF) consisting of a pre-hydrolysis and a simultaneous saccharification and fermentation (SSF). Four cases were studied: 24-h pre-hydrolysis + 48-h SSF (SSSF 24), 12-h pre-hydrolysis + 60-h SSF (SSSF 12), 72-h SSF, and 48-h hydrolysis + 24-h fermentation (SHF). The ethanol concentration, yield, and productivity of SSSF 24 were higher than those of the other operations. A model of SSF was used to simulate the data for four components in SSF. The analysis of the reaction rates of cellobiose, glucose, cell, and ethanol using the model and the parameters from the experiments showed that there was a transition point of the rate-controlling step at which the cell growth control in the initial 2 h was changed to the cellobiose reaction control in later period during ethanol production of SSF from the mixture

    2D-fluoroscopic navigated percutaneous screw fixation of pelvic ring injuries - a case series

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Screw fixation of pelvic ring fractures is a common, but demanding procedure and navigation techniques were introduced to increase the precision of screw placement. The purpose of this case series was the evaluation of screw misplacement rate and functional outcome of percutaneous screw fixation of pelvic ring disruptions using a 2D navigation system.</p> <p>Methods</p> <p>Between August 2004 and December 2007, 44 of 442 patients with pelvic injuries were included for closed reduction and percutaneous screw fixation of disrupted pelvic ring lesions using an optoelectronic 2D-fluoroscopic based navigation system. Operating and fluoroscopy time were measured, as well as peri- and postoperative complications documented. Screw position was assessed by postoperative CT scans. Quality of live was evaluated by SF 36-questionnaire in 40 of 44 patients at mean follow up 15.5 ± 1.2 month.</p> <p>Results</p> <p>56 iliosacral- and 29 ramus pubic-screws were inserted (mean operation time per screw 62 ± 4 minutes, mean fluoroscopy time per screw 123 ± 12 seconds). In post-operative CT-scans the screw position was assessed and graded as follows: I. secure positioning, completely in the cancellous bone (80%); II. secure positioning, but contacting cortical bone structures (14%); III. malplaced positioning, penetrating the cortical bone (6%). The malplacements predominantly occurred in bilateral overlapping screw fixation. No wound infection or iatrogenic neurovascular damage were observed. Four re-operations were performed, two of them due to implant-misplacement and two of them due to implant-failure.</p> <p>Conclusion</p> <p>2D-fluoroscopic navigation is a safe tool providing high accuracy of percutaneous screw placement for pelvic ring fractures, but in cases of a bilateral iliosacral screw fixation an increased risk for screw misplacement was observed. If additional ramus pubic screw fixations are performed, the retrograde inserted screws have to pass the iliopubic eminence to prevent an axial screw loosening.</p

    Acute symptomatic hypoglycaemia mimicking ischaemic stroke on imaging:a systemic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute symptomatic hypoglycaemia is a differential diagnosis in patients presenting with stroke-like neurological impairment, but few textbooks describe the full brain imaging appearances. We systematically reviewed the literature to identify how often hypoglycaemia may mimic ischaemic stroke on imaging, common patterns and relationships with hypoglycaemia severity, duration, clinical outcome and add two new cases.</p> <p>Methods</p> <p>We searched EMBASE and Medline databases for papers reporting imaging in adults with symptomatic hypoglycaemia. We analysed the clinical presentation, outcome, brain imaging findings, duration and severity of hypoglycaemia, time course of lesion appearance, including two new cases.</p> <p>Results</p> <p>We found 42 papers describing computed tomography or magnetic resonance imaging in 65 patients, plus our two cases with symptomatic hypoglycaemia. Imaging abnormalities on computed tomography and magnetic resonance were uni or bilateral, cortical or sub-cortical. Thirteen (20%) mimicked cortical or lacunar stroke. Acute lesions had restricted diffusion on magnetic resonance or low attenuation on computed tomography, plus swelling; older lesions showed focal atrophy or disappeared, as with ischaemic stroke. The association between the depth or duration of hypoglycaemia, the severity or extent of neurological deficit, and the imaging abnormalities, was weak.</p> <p>Conclusion</p> <p>Imaging abnormalities in patients with hypoglycaemia are uncommon but very variable, weakly associated with neurological deficit, and about a fifth mimic acute ischaemic stroke. Blood glucose testing should be routine in all patients with acute neurological impairment and hypoglycaemia should be included in the differential diagnosis of imaging appearances in patients presenting with acute stroke.</p

    Mycobacterium tuberculosis Transcriptional Adaptation, Growth Arrest and Dormancy Phenotype Development Is Triggered by Vitamin C

    Get PDF
    BACKGROUND: Tubercle bacilli are thought to persist in a dormant state during latent tuberculosis (TB) infection. Although little is known about the host factors that induce and maintain Mycobacterium tuberculosis (M. tb) within latent lesions, O(2) depletion, nutrient limitation and acidification are some of the stresses implicated in bacterial dormancy development/growth arrest. Adaptation to hypoxia and exposure to NO/CO is implemented through the DevRS/DosT two-component system which induces the dormancy regulon. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that vitamin C (ascorbic acid/AA) can serve as an additional signal to induce the DevR regulon. Physiological levels of AA scavenge O(2) and rapidly induce the DevR regulon at an estimated O(2) saturation of <30%. The kinetics and magnitude of the response suggests an initial involvement of DosT and a sustained DevS-mediated response during bacterial adaptation to increasing hypoxia. In addition to inducing DevR regulon mechanisms, vitamin C induces the expression of selected genes previously shown to be responsive to low pH and oxidative stress, triggers bacterial growth arrest and promotes dormancy phenotype development in M. tb grown in axenic culture and intracellularly in THP-1 cells. CONCLUSIONS/SIGNIFICANCE: Vitamin C mimics multiple intracellular stresses and has wide-ranging regulatory effects on gene expression and physiology of M. tb which leads to growth arrest and a 'dormant' drug-tolerant phenotype, but in a manner independent of the DevRS/DosT system. The 'AA-dormancy infection model' offers a potential alternative to other models of non-replicating persistence of M. tb and may be useful for investigating host-'dormant' M. tb interactions. Our findings offer a new perspective on the role of nutritional factors in TB and suggest a possible role for vitamin C in TB

    rs5888 Variant of SCARB1 Gene Is a Possible Susceptibility Factor for Age-Related Macular Degeneration

    Get PDF
    Major genetic factors for age-related macular degeneration (AMD) have recently been identified as susceptibility risk factors, including variants in the CFH gene and the ARMS2 LOC387715/HTRA1locus. Our purpose was to perform a case-control study in two populations among individuals who did not carry risk variants for CFHY402H and LOC387715 A69S (ARMS2), called “study” individuals, in order to identify new genetic risk factors. Based on a candidate gene approach, we analyzed SNP rs5888 of the SCARB1 gene, coding for SRBI, which is involved in the lipid and lutein pathways. This study was conducted in a French series of 1241 AMD patients and 297 controls, and in a North American series of 1257 patients with advanced AMD and 1732 controls. Among these individuals, we identified 61 French patients, 77 French controls, 85 North American patients and 338 North American controls who did not carry the CFH nor ARMS2 polymorphisms. An association between AMD and the SCARB1 gene was seen among the study subjects. The genotypic distribution of the rs5888 polymorphism was significantly different between cases and controls in the French population (p<0.006). Heterozygosity at the rs5888 SNP increased risk of AMD compared to the CC genotypes in the French study population (odds ratio (OR) = 3.5, CI95%: 1.4–8.9, p<0.01) and after pooling the 2 populations (OR = 2.9, 95% CI: 1.6–5.3, p<0.002). Subgroup analysis in exudative forms of AMD revealed a pooled OR of 3.6 for individuals heterozygous for rs5888 (95% CI: 1.7–7.6, p<0.0015). These results suggest the possible contribution of SCARB1, a new genetic factor in AMD, and implicate a role for cholesterol and antioxidant micronutrient (lutein and vitamin E) metabolism in AMD

    The significance of the complement system for the pathogenesis of age-related macular degeneration — current evidence and translation into clinical application

    Get PDF
    BACKGROUND: Dysregulation of the complement system has been shown to play a major role in the pathogenesis of age-related macular degeneration (AMD). METHODS: The current evidence from human studies derives from immunohistochemical and proteomic studies in donor eyes, genetic association studies, and studies of blood complement protein levels. These lines of evidence are corroborated by in vitro and animal studies. RESULTS: In AMD donor eyes, detection of complement proteins in drusen suggested local inflammatory processes involving the complement system. Moreover, higher levels of complement proteins in the Bruch's membrane/choroid complex could be detected in AMD donor eyes compared to controls. A large number of independent genetic studies have consistently confirmed the association of AMD with risk or protective variants in genes coding for complement proteins, including complement factor H (CFH), CFH-related proteins 1 and 3, factor B/C2, C3 and factor I. Another set of independent studies detected increased levels of complement activation products in plasma of AMD patients, suggesting that AMD may be a systemic disease and the macula a vulnerable anatomic site of minimal resistance to complement activation. Genotype-phenotype correlations, including the impact of genetic variants on disease progression, gene-environment and pharmacogenetic interactions, have been investigated. There is evidence that complement gene variants may be associated with the progression from early to late forms of AMD, whereas they do not appear to play a significant role when late atrophic AMD has already developed. There are indications for an interaction between genetic variants and supplementation and dietary factors. Also, there is some evidence that variants in the CFH gene influence treatment effects in patients with neovascular AMD. CONCLUSIONS: Such data suggest that the complement system may have a significant role for developing new prophylactic and therapeutic interventions in AMD. In fact, several compounds acting on the complement pathway are currently in clinical trials. Therapeutics that modulate the complement system need to balance inhibition with preservation of sufficient functional activity in order to maintain adequate immune responses and tissue homeostasis. Specifically, targeting the dysfunction appears more adequate than a global suppression of complement activation in chronic diseases such as AMD

    Food-associated cues alter forebrain functional connectivity as assessed with immediate early gene and proenkephalin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cues predictive of food availability are powerful modulators of appetite as well as food-seeking and ingestive behaviors. The neurobiological underpinnings of these conditioned responses are not well understood. Monitoring regional immediate early gene expression is a method used to assess alterations in neuronal metabolism resulting from upstream intracellular and extracellular signaling. Furthermore, assessing the expression of multiple immediate early genes offers a window onto the possible sequelae of exposure to food cues, since the function of each gene differs. We used immediate early gene and proenkephalin expression as a means of assessing food cue-elicited regional activation and alterations in functional connectivity within the forebrain.</p> <p>Results</p> <p>Contextual cues associated with palatable food elicited conditioned motor activation and corticosterone release in rats. This motivational state was associated with increased transcription of the activity-regulated genes <it>homer1a</it>, <it>arc</it>, <it>zif268</it>, <it>ngfi-b </it>and c-<it>fos </it>in corticolimbic, thalamic and hypothalamic areas and of proenkephalin within striatal regions. Furthermore, the functional connectivity elicited by food cues, as assessed by an inter-regional multigene-expression correlation method, differed substantially from that elicited by neutral cues. Specifically, food cues increased cortical engagement of the striatum, and within the nucleus accumbens, shifted correlations away from the shell towards the core. Exposure to the food-associated context also induced correlated gene expression between corticostriatal networks and the basolateral amygdala, an area critical for learning and responding to the incentive value of sensory stimuli. This increased corticostriatal-amygdalar functional connectivity was absent in the control group exposed to innocuous cues.</p> <p>Conclusion</p> <p>The results implicate correlated activity between the cortex and the striatum, especially the nucleus accumbens core and the basolateral amygdala, in the generation of a conditioned motivated state that may promote excessive food intake. The upregulation of a number of genes in unique patterns within corticostriatal, thalamic, and hypothalamic networks suggests that food cues are capable of powerfully altering neuronal processing in areas mediating the integration of emotion, cognition, arousal, and the regulation of energy balance. As many of these genes play a role in plasticity, their upregulation within these circuits may also indicate the neuroanatomic and transcriptional correlates of extinction learning.</p
    corecore