1,082 research outputs found

    Aspiration techniques for bronchoalveolar lavage in translational respiratory research: Paving the way to develop novel therapeutic moieties.

    Full text link
    Bronchoalveolar lavage (BAL) is a simple, yet informative tool in understanding the immunopathology of various lung diseases via quantifying various inflammatory cells, cytokines and growth factors. At present, this traditional method is often blended with several robust and sophisticated molecular and biological techniques sustaining the significance and longevity of this technique. Crucially, the existence of slightly distinct approaches and variables employed at different laboratories around the globe in performing BAL aspiration indeed demands an utmost need to optimize and develop an effective, cost-effective and a reproducible technique. This mini review will be of importance to the biological translational scientist, particularly respiratory researchers in understanding the fundamentals and approaches to apply and consider with BAL aspiration techniques. This will ensure generating a meaningful and clinically relevant data which in turn accelerate the development of new and effective therapeutic moieties for major respiratory conditions

    Does the NIS implementation strategy effectively address cyber security risks in the UK?

    Get PDF
    This research explored how cyber security risks are managed across UK Critical National Infrastructure (CNI) sectors following implementation of the 2018 Networks and Information Security (NIS) legislation. Being in its infancy, there has been limited study into the effectiveness of this national framework for cyber risk management. The analysis of data gathered through interviews with key stakeholders against the NIS objectives indicated a collaborative implementation approach to improve cyber-risk management capabilities in CNI sectors. However, more work is required to bridge the gaps in the NIS framework to ensure holistic security across cyber spaces as well as non-cyber elements: cyber-physical security, cross-sector CNI service security measures, outcome-based regulatory assessments and risks due to connected smart technology implementations alongside legacy systems. This paper proposes ten key recommendations to counter the danger of not meeting the NIS key strategic objectives. In particular, it recommends that the approach to NIS implementation needs further alignment with its objectives, such as bringing a step-change in the cyber-security risk management capabilities of the CNI sectors

    Does upregulated host cell receptor expression provide a link between bacterial adhesion and chronic respiratory disease?

    Full text link
    Expression of the platelet-activating factor receptor is upregulated in the respiratory epithelium of smokers and chronic obstructive pulmonary disease patients. We have recently determined that increased expression of PAFr correlates with higher levels of adhesion to human bronchial epithelial cells by non-typable Haemophilus influenzae and Streptococcus pneumoniae which are major bacterial pathogens in acute exacerbations of COPD. In addition, we found that a PAFr antagonist decreased the adhesion of both respiratory bacterial pathogens to non-cigarette exposure control levels. This highlights the possibility that epithelial receptors, that are upregulated in response to cigarette smoke, could be targeted to specifically block chronic bacterial infections of the lower respiratory tract. In this commentary, we explore the question of whether adhesion to a temporally-upregulated host receptor is a common event in chronic bacterial disease, and as such, could represent a putative therapeutic target for blocking infection by respiratory and other pathogens

    Microbiome effects on immunity, health and disease in the lung

    Full text link
    Chronic respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF), are among the leading causes of mortality and morbidity worldwide. In the past decade, the interest in the role of microbiome in maintaining lung health and in respiratory diseases has grown exponentially. The advent of sophisticated multiomics techniques has enabled the identification and characterisation of microbiota and their roles in respiratory health and disease. Furthermore, associations between the microbiome of the lung and gut, as well as the immune cells and mediators that may link these two mucosal sites, appear to be important in the pathogenesis of lung conditions. Here we review the recent evidence of the role of normal gastrointestinal and respiratory microbiome in health and how dysbiosis affects chronic pulmonary diseases. The potential implications of host and environmental factors such as age, gender, diet and use of antibiotics on the composition and overall functionality of microbiome are also discussed. We summarise how microbiota may mediate the dynamic process of immune development and/or regulation focusing on recent data from both clinical human studies and translational animal studies. This furthers the understanding of the pathogenesis of chronic pulmonary diseases and may yield novel avenues for the utilisation of microbiota as potential therapeutic interventions

    The Underappreciated Role of Epithelial Mesenchymal Transition in Chronic Obstructive Pulmonary Disease and Its Strong Link to Lung Cancer.

    Get PDF
    The World Health Organisation reported COPD to be the third leading cause of death globally in 2019, and in 2020, the most common cause of cancer death was lung cancer; when these linked conditions are added together they come near the top of the leading causes of mortality. The cell-biological program termed epithelial-to-mesenchymal transition (EMT) plays an important role in organ development, fibrosis and cancer progression. Over the past decade there has emerged a substantial literature that also links EMT specifically to the pathophysiology of chronic obstructive pulmonary disease (COPD) as primarily an airway fibrosis disease; COPD is a recognised strong independent risk factor for the development of lung cancer, over and above the risks associated with smoking. In this review, our primary focus is to highlight these linkages and alert both the COPD and lung cancer fields to these complex interactions. We emphasise the need for inter-disciplinary attention and research focused on the likely crucial roles of EMT (and potential for its inhibition) with recognition of its strategic place mechanistically in both COPD and lung cancer. As part of this we discuss the future potential directions for novel therapeutic opportunities, including evidence-based strategic repurposing of currently used familiar/approved medications

    A cost-effective technique for generating preservable biomass smoke extract and measuring its effect on cell receptor expression in human bronchial epithelial cells.

    Full text link
    Nearly half of the world's population uses biomass fuel for the purposes of cooking and heating. Smoke derived from biomass increases the risk of the development of lung diseases, including pneumonia, chronic obstructive pulmonary disease, airway tract infections, and lung cancer. Despite the evidence linking biomass smoke exposure to pulmonary disease, only a small number of experimental studies have been conducted on the impact of biomass smoke on airway epithelial cells. This is in part due to the lack of a standard and easily accessible procedure for the preparation of biomass smoke. Here, we describe a cost-effective and reproducible method for the generation of different smoke extracts, in particular, cow dung smoke extract (CDSE) and wood smoke extract (WSE) for use in a range of biological applications. We examined the effect of the biomass smoke extracts on human bronchial epithelial cell expression of a known responder to cigarette smoke exposure (CSE), the platelet-activating factor receptor (PAFR). Similar to the treatment with CSE, we observed a dose-dependent increase in PAFR expression on human airway epithelial cells that were exposed to CDSE and WSE. This method provides biomass smoke in a re-usable form for cell and molecular bioscience studies on the pathogenesis of chronic lung disease
    • …
    corecore