11,854 research outputs found

    Evaluating the reliability of NAND multiplexing with PRISM

    Get PDF
    Probabilistic-model checking is a formal verification technique for analyzing the reliability and performance of systems exhibiting stochastic behavior. In this paper, we demonstrate the applicability of this approach and, in particular, the probabilistic-model-checking tool PRISM to the evaluation of reliability and redundancy of defect-tolerant systems in the field of computer-aided design. We illustrate the technique with an example due to von Neumann, namely NAND multiplexing. We show how, having constructed a model of a defect-tolerant system incorporating probabilistic assumptions about its defects, it is straightforward to compute a range of reliability measures and investigate how they are affected by slight variations in the behavior of the system. This allows a designer to evaluate, for example, the tradeoff between redundancy and reliability in the design. We also highlight errors in analytically computed reliability bounds, recently published for the same case study

    Generation of wakefields by whistlers in spin quantum magnetoplasmas

    Full text link
    The excitation of electrostatic wakefields in a magnetized spin quantum plasma by the classical as well as the spin-induced ponderomotive force (CPF and SPF, respectively) due to whistler waves is reported. The nonlinear dynamics of the whistlers and the wakefields is shown to be governed by a coupled set of nonlinear Schr\"{o}dinger (NLS) and driven Boussinesq-like equations. It is found that the quantum force associated with the Bohm potential introduces two characteristic length scales, which lead to the excitation of multiple wakefields in a strongly magnetized dense plasma (with a typical magnetic field strength B0109B_{0}\gtrsim10^{9} T and particle density n01036n_{0}\gtrsim10^{36} m3^{-3}), where the SPF strongly dominates over the CPF. In other regimes, namely B0108B_{0}\lesssim10^{8} T and  n01035\ n_{0}\lesssim10^{35} m3^{-3}, where the SPF is comparable to the CPF, a plasma wakefield can also be excited self-consistently with one characteristic length scale. Numerical results reveal that the wakefield amplitude is enhanced by the quantum tunneling effect, however it is lowered by the external magnetic field. Under appropriate conditions, the wakefields can maintain high coherence over multiple plasma wavelengths and thereby accelerate electrons to extremely high energies. The results could be useful for particle acceleration at short scales, i.e. at nano- and micrometer scales, in magnetized dense plasmas where the driver is the whistler wave instead of a laser or a particle beam.Comment: 8 pages, 2 figures; Revised version to appear in Physics of Plasmas (Dec. 2010 issue

    Attractive Potential around a Thermionically Emitting Microparticle

    Full text link
    We present a simulation study of the charging of a dust grain immersed in a plasma, considering the effect of electron emission from the grain (thermionic effect). It is shown that the OML theory is no longer reliable when electron emission becomes large: screening can no longer be treated within the Debye-Huckel approach and an attractive potential well forms, leading to the possibility of attractive forces on other grains with the same polarity. We suggest to perform laboratory experiments where emitting dust grains could be used to create non-conventional dust crystals or macro-molecules.Comment: 3 figures. To appear on Physical Review Letter

    Quantum Trivelpiece-Gould waves in a magnetized dense plasma

    Full text link
    The dispersion relation for the electrostatic waves below the electron plasma frequency in a dense quantum plasma is derived by using the magnetohydrodynamic model. It is shown that in the classical case the dispersion relation reduces to the expression obtained for the well-known Trivelpiece-Gould (TG) modes. Attention is also devoted to the case of solitary waves associated with the nonlinear TG modes.Comment: 8 pages, 0 figure

    Experimental study of nonlinear dust acoustic solitary waves in a dusty plasma

    Get PDF
    The excitation and propagation of finite amplitude low frequency solitary waves are investigated in an Argon plasma impregnated with kaolin dust particles. A nonlinear longitudinal dust acoustic solitary wave is excited by pulse modulating the discharge voltage with a negative potential. It is found that the velocity of the solitary wave increases and the width decreases with the increase of the modulating voltage, but the product of the solitary wave amplitude and the square of the width remains nearly constant. The experimental findings are compared with analytic soliton solutions of a model Kortweg-de Vries equation.Comment: The manuscripts includes six figure

    Microstructure of a liquid complex (dusty) plasma under shear

    Full text link
    The microstructure of a strongly coupled liquid undergoing a shear flow was studied experimentally. The liquid was a shear melted two-dimensional plasma crystal, i.e., a single-layer suspension of micrometer-size particles in a rf discharge plasma. Trajectories of particles were measured using video microscopy. The resulting microstructure was anisotropic, with compressional and extensional axes at around ±45\pm 45^{\circ} to the flow direction. Corresponding ellipticity of the pair correlation function g(r)g({\bf r}) or static structure factor S(k)S(\bf{k}) gives the (normalized) shear rate of the flow.Comment: 5 pages, 6 figure
    corecore