3 research outputs found
Synergistic Biophysical Techniques Reveal Structural Mechanisms of Engineered Cationic Antimicrobial Peptides in Lipid Model Membranes
In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d-enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.Fil: Heinrich, Frank. University of Carnegie Mellon; Estados UnidosFil: Salyapongse, Aria. University of Carnegie Mellon; Estados UnidosFil: Kumagai, Akari. University of Carnegie Mellon; Estados UnidosFil: Dupuy, Fernando Gabriel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Tucumán. Instituto Superior de Investigaciones BiolĂłgicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones BiolĂłgicas; ArgentinaFil: Shukla, Karpur. University of Carnegie Mellon; Estados UnidosFil: Penk, Anja. Universitat Leipzig; AlemaniaFil: Huster, Daniel. Universitat Leipzig; AlemaniaFil: Ernst, Robert K.. University of Maryland; Estados UnidosFil: Pavlova, Anna. Georgia Institute Of Techology. School Of Chemical & Biomolecular Engineering; Estados UnidosFil: Gumbart, James C.. Georgia Institute Of Techology. School Of Chemical & Biomolecular Engineering; Estados UnidosFil: Deslouches, Berthony. University of Pittsburgh; Estados UnidosFil: Di, Y. Peter. University of Pittsburgh; Estados UnidosFil: Tristram-Nagle, Stephanie. University of Carnegie Mellon; Estados Unido
Quantum Foundations of Classical Reversible Computing
The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative reversible computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed
Synergistic Biophysical Techniques Reveal Structural Mechanisms of Engineered Cationic Antimicrobial Peptides in Lipid Model Membranes
In the quest for new antibiotics, two novel engineered cationic antimicrobial peptides (eCAPs) have been rationally designed. WLBU2 and D8 (all 8 valines are the d-enantiomer) efficiently kill both Gram-negative and -positive bacteria, but WLBU2 is toxic and D8 nontoxic to eukaryotic cells. We explore protein secondary structure, location of peptides in six lipid model membranes, changes in membrane structure and pore evidence. We suggest that protein secondary structure is not a critical determinant of bactericidal activity, but that membrane thinning and dual location of WLBU2 and D8 in the membrane headgroup and hydrocarbon region may be important. While neither peptide thins the Gram-negative lipopolysaccharide outer membrane model, both locate deep into its hydrocarbon region where they are primed for self-promoted uptake into the periplasm. The partially α-helical secondary structure of WLBU2 in a red blood cell (RBC) membrane model containing 50 % cholesterol, could play a role in destabilizing this RBC membrane model causing pore formation that is not observed with the D8 random coil, which correlates with RBC hemolysis caused by WLBU2 but not by D8.Fil: Heinrich, Frank. University of Carnegie Mellon; Estados UnidosFil: Salyapongse, Aria. University of Carnegie Mellon; Estados UnidosFil: Kumagai, Akari. University of Carnegie Mellon; Estados UnidosFil: Dupuy, Fernando Gabriel. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas. Centro CientĂfico TecnolĂłgico Conicet - Tucumán. Instituto Superior de Investigaciones BiolĂłgicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones BiolĂłgicas; ArgentinaFil: Shukla, Karpur. University of Carnegie Mellon; Estados UnidosFil: Penk, Anja. Universitat Leipzig; AlemaniaFil: Huster, Daniel. Universitat Leipzig; AlemaniaFil: Ernst, Robert K.. University of Maryland; Estados UnidosFil: Pavlova, Anna. Georgia Institute Of Techology. School Of Chemical & Biomolecular Engineering; Estados UnidosFil: Gumbart, James C.. Georgia Institute Of Techology. School Of Chemical & Biomolecular Engineering; Estados UnidosFil: Deslouches, Berthony. University of Pittsburgh; Estados UnidosFil: Di, Y. Peter. University of Pittsburgh; Estados UnidosFil: Tristram-Nagle, Stephanie. University of Carnegie Mellon; Estados Unido