10 research outputs found

    Gangliosides Inhibit Glucosylceramide Synthase: A Possible Role in Ganglioside Therapy

    Full text link
    Gangliosides stimulate the hydrolysis of glucosylceramide (GlcCer), their precursor, and therefore may lower the level of cellular GlcCer and exert a feedback control effect to slow the formation of gangliosides. Tests were made to see if a similar effect on GlcCer levels can be exerted by the action of gangliosides on GlcCer synthesis. Using a new assay procedure, we showed that gangliosides do inhibit the synthase in brain membranes quite effectively, the most active being those lipids with more sugar and sialic acid moieties. Mice injected with a mixture of brain gangliosides for 5 days were found to have a lower level of ceramide:UDP-Glc glucosyl-transferase activity in brain, liver, and kidney. The inhibition seems to be exerted by competition for the active site and binding to effector site(s) on the enzyme. It is possible that the reported therapeutic actions of gangliosides on the nervous system are, in part, the result of lowered levels of GlcCer. Malignant tumors shed gangliosides into the extracellular fluid, which are believed to block the generation of antibodies by the host's immunodefense system; this effect also may be due, in part, to reduction in the GlcCer level of immunogenic cells. A new finding is that a ceramide containing phytosphingosine is a markedly better substrate for GlcCer synthase than one containing the more common base.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66370/1/j.1471-4159.1991.tb03475.x.pd

    Rapid kidney changes resulting from glycosphingolipid depletion by treatment with a glucosyltransferase inhibitor

    Full text link
    The ceramide analog, -threo-1-phenyl-2-decanoylamino-3-morpholino-1-morpholino-1-propanol, inhibits the glucosylation of ceramide and thus, by virtue of the normal catabolism of the higher glucosphingolipids, leads to a general depletion of cellular glucolipids. In a previous study with chronic administration of this inhibitor in mice, it was found that the kidneys and liver, particularly the former, grew more poorly than the organs of control mice. This study shows that the inhibitor produces rapid decreases in glucolipid concentration in kidney which are maintained for at least 5 days without noticeable harm. The changes were enhanced by inclusion of -cycloserine in the injection scheme. Cycloserine blocks ketosphinganine synthase and thus slows the synthesis of all sphingolipids. However, sphingomyelin levels did not drop significantly in this study. The glucosyltransferase inhibitor also produced a small decrease in kidney [beta]--glucuronidase and distinct increases in the levels of glucocerebrosidase, galactocerebrosidase and sphingomyelinase. It also produced a small but distinct decrease in the level of glucosyltransferase, after a delay of a few hours, possibly because the inhibitor was metabolized to a covalently inactivating product. Comparison with kidney, liver and brain showed that the kidney was more sensitive to the action of the morpholino inhibitor.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29372/1/0000442.pd

    Effect of latent iron deficiency on the levels of iron, calcium, zinc, copper, manganese, cadmium and lead in liver, kidney and spleen of growing rats

    Full text link
    Feeding a marginally low iron content diet (18–20 mg iron/kg diet) to weaned (21-day-old) rats for 8 weeks produced a significant decrease in liver non-heme iron (66%, p<0.001) but no change in blood hemoglobin. Total iron contents of liver (56%, p<0.01), spleen (20%, p<0.05), and kidney (19%, p<0.05) were also found to decrease along with increased zinc, copper, calcium, manganese lead and cadmium in various organs. The magnitude of alteration of a metal was different in different organs. However, liver was found to be the most affected organ. Two weeks of rehabilitation with iron-sufficient diet (390 mg iron/kg diet) normalized these altered levels.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42826/1/18_2005_Article_BF01939956.pd

    Vaccine-draining lymph nodes of cancer patients for generating anti-cancer antibodies

    No full text
    Abstract Background Our research is focused on using the vaccine draining lymph node to better understand the immune response to cancer vaccines and as a possible source of anti-cancer reagents. We evaluated vaccine draining lymph nodes archived from a clinical study in melanoma patients and determined the reaction of B cells to the vaccine peptides. Methods Mononuclear cells (MNCs) were recovered from cryopreserved lymph nodes that were directly receiving drainage from multi-peptide melanoma vaccine. The patients were enrolled on a vaccine study (NCT00089219, FDA, BB-IND No. 10825). B cell responses in the vaccine-draining lymph nodes were studied under both stimulated and un-stimulated conditions. Cryopreserved cells were stimulated with CD40L, stained with multiple human cell-surface markers (CD19, CD27, IgM) to identify different categories of B cell sub populations with flow cytometry. Hybridomas were generated from the lymph node cells after CD40L-stimulation. Cells were fused to murine plasmacytoma P3X63.Ag8.653 using Helix electrofusion chamber. ELISA was used to evaluate hybridoma derived antibody binding to vaccine peptides. Results Viable MNCs were satisfactorily recovered from lymph nodes cryopreserved from six vaccine study patients 8–14 years previously. B cell ELISPOT demonstrated responses for each patient to multiple vaccine peptides. CD40L stimulation of lymph node cells increased the proportion of CD19+ CD27+ cells from 12 to 65% of the sample and increased the proportion of class-switched cells. Screening of IgG secreting clones demonstrated binding to melanoma vaccine peptides. Conclusions B cells were successfully recovered and expanded from human cryopreserved vaccine-draining lymph nodes. Individual B cells were identified that secreted antibodies that bound to cancer vaccine peptides. The ability to reliably generate in vitro the same antibodies observed in the blood of vaccinated patients will facilitate research to understand mechanisms of human antibody activity and possibly lead to therapeutic antibodies
    corecore