8 research outputs found

    Magnetization State Selection Method for Uncontrolled Generator Fault Prevention on Variable Flux Memory Machines

    No full text

    Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    Get PDF
    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses

    Design and analysis of a flux intensifying permanent magnet embedded salient pole wind generator

    No full text
    This paper presents an improved flux intensifying permanent magnet embedded salient pole wind generator (FI-PMESPWG) with mirror symmetrical magnetizing directions permanent magnet (PM) for improving generator’s performances. The air-gap flux densities, the output voltage, the cogging torque and the d- and q-axis inductances of FI-PMESPWG are all calculated and analyzed by using the finite element method (FEM). To highlight the advantages of the proposed FI-PMESPWG, an original permanent magnet embedded salient pole wind generator (PMESPWG) model is adopted for comparison under the same operating conditions. The calculating results show that the air-gap flux densities of FI-PMESPWG are intensified with the same magnet amounts because the PMs are set in a form of V shape in each pole. The difference between d-axis inductance and q-axis inductance of the proposed FI-PMESPWG is reduced. Thus, the output power of the proposed FI-PMESPWG reaches a higher value than that of the original PMESPWG at the same current phase angle. The cogging torque is diminished because the flux path is changed. All the analysis results indicate that the electromagnetic characteristics of the proposed FI-PMESPWG are significantly better than that of the original PMESPWG

    Comparative Study of Stator-Consequent-Pole Permanent Magnet Machines With Different Stator-Slot Configurations

    No full text

    Second-Order Sliding Mode-Based Direct Torque Control of Variable-Flux Memory Machine

    No full text
    The variable-flux memory machine (VFMM) exhibits high efficiency over a wide speed range because its airgap magnetic flux can easily be regulated by varying the magnetization state (MS) of the employed low coercivity force permanent magnets. This paper proposes a second-order sliding mode (SM)-based direct torque control (DTC) strategy for the VFMM, which features a relatively low computational complexity and less dependence on machine parameters. The operating principle and mathematical model of the VFMM are first described and established. On this basis, a novel control scheme combining the DTC strategy with MS manipulation is proposed, in which the machine is controlled by utilizing the DTC strategy incorporating the id=0i_{\mathrm {d}} = 0 condition, while the MS manipulation is implemented by energizing reference stator flux linkage pulses. A super-twisting second-order SM controller is subsequently developed to achieve strong robustness. The developed control structure avoids a complicated decoupling algorithm and is simpler than that of the conventional field-oriented control (FOC) method. Finally, the effectiveness of the proposed control scheme is validated by simulation and experimental results

    Comparative Analysis of Parallel Hybrid Magnet Memory Machines with Different PM Arrangements

    No full text
    This paper presents a comparative analysis of two parallel hybrid magnet memory machines (PHMMMs) with different permanent magnet (PM) arrangements. The proposed machines are both geometrically characterized by a parallel U-shaped hybrid PM configuration and several q-axis magnetic barriers. The configurations and operating principles of the investigated machines are introduced firstly. The effect of magnet arrangements on the performance of the proposed machines is then evaluated with a simplified magnetic circuit model. Furthermore, the electromagnetic characteristics of the proposed machines are investigated and compared by the finite-element method (FEM). The experiments on one prototype are carried out to validate the FEM results

    Speed Range Extension of Dual-Stator PM Machine Using Multi-Mode Winding Switching Strategy

    No full text
    In this paper, a novel winding switching (WS) strategy is proposed for the speed range extension of a dual-stator permanent magnet machine (DS-PMM), which can achieve simple and effective dynamic mode conversion over an entire operating region. Two types of WS circuits with an inverter and two switch groups were first designed to enable the winding reconfiguration of the machine, which could operate in three modes. The WS principle was then elucidated by introducing simplified equivalent circuits. Besides, the torque–speed curves of the machine under different operating modes were analyzed, based on the mathematical model. A speed-based WS controller was, subsequently, designed to generate the WS control signal and realize the multi-mode operation according to real-time operating conditions. The feasibility of the proposed WS strategy for extending the speed range of the DS-PMM was, finally, verified by experiments
    corecore