145 research outputs found

    Three Dimensional Superconductivity in FeSe with Tczero Up to 10.9 K Induced by Internal Strain

    Get PDF
    Polycrystalline sample FeSe was synthesized by a self-flux solution method which shows a zero resistance temperature up to 10.9 K and a Tconset (90% \rhon, \rhon: normal state resistivity) up to 13.3 K. The decrease of superconducting transition temperature by heat treatment indicates that internal crystallographic strain which plays the same effect as external pressure is the origin of its high Tc. The fluctuation conductivity was studied which could be well described by 3D Aslamazov-Larkin (AL) power law. The estimated value of coherence length \xic=9.2 \AA is larger than the distance between conducting layers (~6.0 \AA), indicating the three-dimensional nature of superconductivity in this compound.Comment: 5 figure

    Formation stage and controlling factors of the paleo-uplifts in the Tarim Basin: A further discussion

    Get PDF
    AbstractVarious types of paleo-uplifts with different characteristics are developed in the Tarim Basin. Previously, there were multiple opinions on the pale-uplifts origins and structural evolution, so the oil and gas exploration ideas and deployment in the Tarim Basin were not developed smoothly. In this paper, regional seismic interpretation and structural analysis were carried out on the deep marine carbonate rocks in this basin based on the new seismic and drilling data. Then combined with the structural denudation results, the paleo-structural frameworks were reconstructed. And finally, the formation stage and main controlling factors of paleo-uplifts were discussed. It is shown that the Middle Ordovician is the key period when regional extension was converted to compression in this basin, so stratigraphic, sedimentary and structural differences occurred. Before the deposition of Yijianfang Fm in late Middle Ordovician, three carbonate paleo-uplifts (i.e., the Northern, Central and SW Tarim paleo-uplifts) begun to appear, and they were all broad-folded paleo-uplifts of nearly E–W striking and were formed at the same stage. The distribution and development of the Phanerozoic uplifts in this basin are restricted by the Northern and Southern Tarim basement pale-uplifts of nearly E–W striking which were developed during the Precambrian. It is indicated that all the three paleo-uplifts are compressional paleo-uplifts originated from the convergence of the southern plate margin based on the basement paleo-uplifts and they are all characterized by similar structural characteristics and inherited formation and evolution. The current differences of paleo-uplifts are controlled by multi-stage intense structural reformation since the Silurian. It is concluded that the oil and gas exploration potential is immense in the carbonate reservoirs of well-preserved deep paleo-structural zones in a larger area

    Calcium-magnesium-alumino-silicate induced degradation of La2(Zr0.7Ce0.3)2O7/YSZ double-ceramic–layer thermal barrier coatings prepared by electron beam-physical vapor deposition

    Get PDF
    During last decades, much effort has been made to develop new alternative thermal barrier coating (TBC) to traditional YSZ for applications above 1250oC. La2(Zr0.7Ce0.3)2O7(LZ7C3) is deemed as a very promising TBC candidate for advanced gas turbine because of its extremely low thermal conductivity, high sintering resistance and phase stability from room temperature to 1600oC. Thermal cycling with a gas burner showed that the LZ7C3/YSZ double-ceramic-layer (DCL) coatings prepared by electron beam-physical vapor deposition (EB-PVD) or atmospheric plasma spraying had a much longer lifetime than that of YSZ coating at 1250± 50oC.The use of the new TBC can allow higher gas temperatures, resulting in further improved thermal efficiency and engine performance. However, at these high operating temperatures, TBCs become susceptible to attack by calcium-magnesium-alumino-silicate (CMAS, relative to the main chemical components Ca, Mg, Al and Si) deposits resulting from the ingestion of siliceous minerals (dust, sand, volcanic ash, runway debris) with the intake air. CMAS becomes molten at temperatures above 1200oC and then rapidly penetrates the TBCs by capillary force, resulting in the loss of strain tolerance and premature failure of the coatings. In this paper, CMAS induced degradation of LZ7C3/YSZ DCL coatings prepared by EB-PVD method were investigated. Hot corrosion tests were performed at 1250oC at durations varying from 0.5 h to 24 h. It is observed that the infiltration of CMAS in the intercolumnar gaps was largely suppressed in the case of EB-PVD LZ7C3 coating. The penetration depth rarely exceeded 40 μm below the original surface even after 24 h exposure at 1250oC. This was ascribed to rapid dissolution of the LZ7C3 and essentially concurrent formation of a sealing layer made of crystalline apatite and fluorite phases, which is consistent with the observation on Gd2Zr2O7. However, large vertical cracks would form in the EB-PVD LZ7C3 coating during thermal cycling as a result of re-crystallization, sintering and thermal expansion mismatch between ceramic coating and substrate. These vertical cracks can also act as channels to CMAS melt infiltration. Since the kinetics of the dissolve-reprecipitation reaction was slower than the infiltration rate of CMAS in the vertical crack, the majority of vertical cracks were not sealed. As a result, CMAS flowed down to the LZ7C3/YSZ interface along the vertical cracks, and then easily penetrated the YSZ buffer layer by capillary force. Chemical interaction also occurred in the YSZ buffer layer. What\u27s more, the YSZ layer in the DCL coating even underwent a severer CMAS attack than the single YSZ coating. After 4 h CMAS exposure, the YSZ layer of the LZ7C3/YSZ bilayer coating was totally dissolved by molten CMAS followed by precipitation of a large number of globular ZrO2 particles, while the single YSZ coating just suffered a slight degradation in the same experimental conditions and still kept its columnar structure. The probable reason was that the CMAS melt in the YSZ layer of the DCL coating had a higher CaO/SiO2 ration than the original CMAS composition due to the formation of apatite phase when CMAS reacted with the upper LZ7C3 layer. The initial Si: Ca ratio (Si: Ca≈1.4) in CMAS melt is less than the corresponding apatite (Si: Ca≈3), leading to progressive CaO enrichment during apatite crystallization. For this reason, it is suggested that the effectiveness of the CMAS mitigation strategy for YSZ TBCs by adopting a so-called CMAS-resistant top layer needs to be assessed in the context of more realistic conditions. If the formation of large vertical cracks in TBCs was not avoided, this CMAS mitigation approach may not as effective as expected

    Thermal barrier coatings on polymer materials

    Get PDF
    Polyimide matrix composite (PIMC) has been widely used to replace metallic parts due to its low density and high strength. It is considered as an effective approach to improve thermal oxidation resistance, operation temperature and lifetime of PIMC by depositing a protection coating. The objective of the research was to fabricate a series of thermal barrier coatings (TBCs) on PIMC by a combined sol-gel/sealing treatment process and air plasma spraying (APS). By optimizing the experimental parameters, thermal shock resistance, thermal oxidation resistance and thermal ablation resistance of PIMC could be improved significantly. The ZrO2 sol was prepared by sol-gel process and the effects of the different organic additions on phase structure, crystallite size and crystal growth behavior of the ZrO2 nanocrystallite were investigated. The addition of HAc and DMF were beneficial to decrease the crystallite size and alter the activation energy for crystal growth, further inducing the crystallization of ZrO2 nanocrystallite at low temperature (300ºC) and the stability of tetragonal ZrO2 at 600ºC. Based on the optimized parameters of the sol preparation, the ZrO2/phosphates duplex coating was fabricated on PIMC via a combined sol-gel and sealing treatment process. The sealing mechanism of the phosphates in the duplex coating was primarily attributed to the adhesive binding of the phosphates and the chemical bonding between the sealant and the coating. It was demonstrated that the duplex coating exhibited excellent thermal shock resistance and no apparent delamination or spallation occurred. Relatively, the duplex coating with the thickness of 150 μm provided excellent thermal oxidation and thermal ablation resistance for the polymer substrate. However, the presence of cracks and delamination in the coatings provided the channels for oxygen diffusion, causing the final failure of the protection coating. Figure 4 – TBCs on CFPI The Zn/YSZ and Al/YSZ coating systems were successfully deposited on PIMC by APS. Metals with comparatively low melting point as the bond coats (Cu, Al, Zn) were beneficial to increase thermal shock resistance of the coating systems. In comparison with the Al/YSZ coating system, the Zn/YSZ coating exhibited the better thermal shock resistance, which was ascribable to the lower residual stress in the Zn layer after deposition and the lower thermal stress induced during thermal shock test. For these coatings, the increase in surface toughness of the substrate as well as the decrease in thickness of metal layer favored the improvement of thermal shock resistance of the coatings. With the temperature increases, thermal shock lifetime of the coatings decreased disastrously. However, the difference was that the slight increase of the thickness of YSZ layer favored the increase in thermal shock resistance of the Al/YSZ coatings, while for the Zn/YSZ coating systems the increase in the thickness of YSZ layer made thermal shock resistance weaken. Owing to the protection of Zn/YSZ and Al/YSZ coating systems, the time for 5 wt% weight loss of the sample was prolonged from 16 h to 50 h when oxidation at 400ºC; as the oxidation temperature increased to 450ºC, the time for 5wt% weight loss was extended from 5 h to 13 h. By depositing different coatings, the anti-ablation property of PIMC was significantly improved. During property testing, the formation of cracks and delamination in the coating and the occurrence of the spallation led to the failure of the coating systems, which was mainly due to the residual stress during the deposition process, thermal stress induced by the mismatch in thermal expansion coefficient and further oxidation of the substrate. Please click Additional Files below to see the full abstract

    Magnetic field induced discontinuous spin reorientation in ErFeO3 single crystal

    Get PDF
    The spin reorientation of ErFeO3 that spontaneously occurs at low temperature has been previously determined to be a process involving the continuous rotation of Fe3þ spins. In this work, the dynamic process of spin reorientation in ErFeO3 single crystal has been investigated by AC susceptibility measurements at various frequencies and static magnetic fields. Interestingly, two completely discontinuous steps are induced by a relatively large static magnetic field due to the variation in the magnetic anisotropy during this process. It provides deeper insights into the intriguing magnetic exchange interactions which dominate the sophisticated magnetic phase transitions in the orthoferrite systems

    Correlation between porosity, amorphous phase and CMAS corrosion behaviour of LaMgAl11O19 thermal barrier coatings

    Get PDF
    Calcium-magnesium-alumino-silicate (CMAS) attack is one of the significant failure mechanisms of thermal barrier coatings (TBCs), which can facilitate TBC’s degradation at elevated temperatures. To clarify the correlation between the porosity, CMAS corrosion behaviour, lanthanum magnesium hexaluminate (LaMgAl11O19, LMA) TBCs were prepared by atmospheric plasma spraying (APS) and then heat-treated at 1173K and 1523K, respectively. For comparison, LMA tablets were prepared by mechanical and cold isostatic pressing. CMAS attack at 1523K was carried out both for LMA tablets and LMA coatings. Their microstructure, phase composition, and crystallization behavior after CMAS attack were investigated using scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS), X-ray diffraction as well as differential scanning calorimetry (DSC). The results indicated that CMAS attack was arrested for LMA tablets due to the formation of a dense crystalline layer induced by the chemical interactions between LMA and CMAS glass, while the as-sprayed LMA coatings were completely penetrated by molten CMAS due to the presence of amorphous phase and connected pores. Although the isothermal heat-treatment promoted a crystallization of LMA coatings, much vertical cracks formed during heat-treatment. The heat-treated LMA coatings suffered a severer CMAS attack than the as-sprayed one, since the vertical cracks inevitably provided efficient infiltration paths for molten CMAS

    From \u3cem\u3eJ\u3c/em\u3e\u3csub\u3eeff\u3c/sub\u3e=1/2 Insulator to \u3cem\u3ep\u3c/em\u3e-Wave Superconductor in Single-Crystal Sr\u3csub\u3e2\u3c/sub\u3eIr\u3csub\u3e1−\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eRu\u3csub\u3e\u3cem\u3ex\u3c/em\u3e\u3c/sub\u3eO4 (0≤\u3cem\u3ex\u3c/em\u3e≤1)

    Get PDF
    Sr2IrO4 is a magnetic insulator assisted by strong spin-orbit coupling (SOC) whereas Sr2RuO4 is a p-wave superconductor. The contrasting ground states have been shown to result from the critical role of the strong SOC in the iridate. Our investigation of structural, transport, and magnetic properties reveals that substituting 4dRu4+(4d4) ions for 5dIr4+(5d5) ions in Sr2IrO4 directly adds holes to the t2g bands, reduces the SOC, and thus rebalances the competing energies in single-crystal Sr2Ir1−xRuxO4. A profound effect of Ru doping driving a rich phase diagram is a structural phase transition from a distorted I41/acd to a more ideal I4/mmm tetragonal structure near x=0.50 that accompanies a phase transition from an antiferromagnetic-insulating state to a paramagnetic-metal state. We also make a comparison with Rh-doped Sr2IrO4, highlighting important similarities and differences

    Spin Switching and Magnetization Reversal in Single-Crystal NdFeO\u3csub\u3e3\u3c/sub\u3e

    Get PDF
    We report an experimental and computational study of single-crystal NdFeO3, which features two inequivalent magnetic sublattices, namely, Fe and Nd sublattices that are coupled in an antiparallel fashion. This paper reveals that a strong interaction between 3d and 4f electrons of the two sublattices along with a spin-lattice coupling drives an extremely interesting magnetic state that is highly sensitive to the orientation and history of weak magnetic field. The following phenomena are particularly remarkable: (1) sharply contrasting magnetization M(T) along the a and c axes; (2) a first-order spin switching along the a axis below 29 K when the system is zero-field-cooled; and (3) a progressive magnetization reversal when the system is field-cooled. The intriguing magnetic behavior is captured in our first-principles density functional theory calculations
    • …
    corecore