234 research outputs found

    Regularizing Neural Machine Translation by Target-bidirectional Agreement

    Full text link
    Although Neural Machine Translation (NMT) has achieved remarkable progress in the past several years, most NMT systems still suffer from a fundamental shortcoming as in other sequence generation tasks: errors made early in generation process are fed as inputs to the model and can be quickly amplified, harming subsequent sequence generation. To address this issue, we propose a novel model regularization method for NMT training, which aims to improve the agreement between translations generated by left-to-right (L2R) and right-to-left (R2L) NMT decoders. This goal is achieved by introducing two Kullback-Leibler divergence regularization terms into the NMT training objective to reduce the mismatch between output probabilities of L2R and R2L models. In addition, we also employ a joint training strategy to allow L2R and R2L models to improve each other in an interactive update process. Experimental results show that our proposed method significantly outperforms state-of-the-art baselines on Chinese-English and English-German translation tasks.Comment: Accepted by AAAI 201

    Accelerating Transducers through Adjacent Token Merging

    Full text link
    Recent end-to-end automatic speech recognition (ASR) systems often utilize a Transformer-based acoustic encoder that generates embedding at a high frame rate. However, this design is inefficient, particularly for long speech signals due to the quadratic computation of self-attention. To address this, we propose a new method, Adjacent Token Merging (A-ToMe), which gradually combines adjacent tokens with high similarity scores between their key values. In this way, the total time step could be reduced, and the inference of both the encoder and joint network is accelerated. Experiments on LibriSpeech show that our method can reduce 57% of tokens and improve the inference speed on GPU by 70% without any notable loss of accuracy. Additionally, we demonstrate that A-ToMe is also an effective solution to reduce tokens in long-form ASR, where the input speech consists of multiple utterances.Comment: Interspeech 202

    Bridging the Gap between Pre-Training and Fine-Tuning for End-to-End Speech Translation

    Full text link
    End-to-end speech translation, a hot topic in recent years, aims to translate a segment of audio into a specific language with an end-to-end model. Conventional approaches employ multi-task learning and pre-training methods for this task, but they suffer from the huge gap between pre-training and fine-tuning. To address these issues, we propose a Tandem Connectionist Encoding Network (TCEN) which bridges the gap by reusing all subnets in fine-tuning, keeping the roles of subnets consistent, and pre-training the attention module. Furthermore, we propose two simple but effective methods to guarantee the speech encoder outputs and the MT encoder inputs are consistent in terms of semantic representation and sequence length. Experimental results show that our model outperforms baselines 2.2 BLEU on a large benchmark dataset.Comment: AAAI202
    • …
    corecore