33 research outputs found

    Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean

    Get PDF
    Hepatitis B virus (HBV) infection can lead to serious liver diseases, including liver cirrhosis (LC) and hepatocellular carcinoma (HCC); however, about 85–90% of infected individuals become inactive carriers with sustained biochemical remission and very low risk of LC or HCC. To identify host genetic factors contributing to HBV clearance, we conducted genome-wide association studies (GWAS) and replication analysis using samples from HBV carriers and spontaneously HBV-resolved Japanese and Korean individuals. Association analysis in the Japanese and Korean data identified the HLA-DPA1 and HLA-DPB1 genes with Pmeta = 1.89×10−12 for rs3077 and Pmeta = 9.69×10−10 for rs9277542. We also found that the HLA-DPA1 and HLA-DPB1 genes were significantly associated with protective effects against chronic hepatitis B (CHB) in Japanese, Korean and other Asian populations, including Chinese and Thai individuals (Pmeta = 4.40×10−19 for rs3077 and Pmeta = 1.28×10−15 for rs9277542). These results suggest that the associations between the HLA-DP locus and the protective effects against persistent HBV infection and with clearance of HBV were replicated widely in East Asian populations; however, there are no reports of GWAS in Caucasian or African populations. Based on the GWAS in this study, there were no significant SNPs associated with HCC development. To clarify the pathogenesis of CHB and the mechanisms of HBV clearance, further studies are necessary, including functional analyses of the HLA-DP molecule

    Investigation of infrared thermography for subsurface damage detection of concrete structures

    Get PDF
    Deterioration of road infrastructure arises from aging and various other factors. Consequently, inspection and maintenance have been a serious worldwide problem. In the United States, degradation of concrete bridge decks is a widespread problem among several bridge components. In order to prevent the impending degradation of bridges, periodic inspection and proper maintenance are indispensable. However, the transportation system faces unprecedented challenges because the number of aging bridges is increasing under limited resources, both in terms of budget and personnel. Therefore, innovative technologies and processes that enable bridge owners to inspect and evaluate bridge conditions more effectively and efficiently with less human and monetary resources are desired. Traditionally, qualified engineers and inspectors implemented hammer sounding and/or chain drag, and visual inspection for concrete bridge deck evaluations, but these methods require substantial field labor, experience, and lane closures for bridge deck inspections. Under these circumstances, Non-Destructive Evaluation (NDE) techniques such as computer vision-based crack detection, impact echo (IE), ground-penetrating radar (GPR) and infrared thermography (IRT) have been developed to inspect and monitor aging and deteriorating structures rapidly and effectively. However, no single method can detect all kinds of defects in concrete structures as well as the traditional inspection combination of visual and sounding inspections; hence, there is still no international standard NDE methods for concrete bridges, although significant progress has been made up to the present. This research presents the potential to reduce a burden of bridge inspections, especially for bridge decks, in place of traditional chain drag and hammer sounding methods by IRT with the combination of computer vision-based technology. However, there were still several challenges and uncertainties in using IRT for bridge inspections. This study revealed those challenges and uncertainties, and explored those solutions, proper methods and ideal conditions for applying IRT in order to enhance the usability, reliability and accuracy of IRT for concrete bridge inspections. Throughout the study, detailed investigations of IRT are presented. Firstly, three different types of infrared (IR) cameras were compared under active IRT conditions in the laboratory to examine the effect of photography angle on IRT along with the specifications of cameras. The results showed that when IR images are taken from a certain angle, each camera shows different temperature readings. However, since each IR camera can capture temperature differences between sound and delaminated areas, they have a potential to detect delaminated areas under a given condition in spite of camera specifications even when they are utilized from a certain angle. Furthermore, a more objective data analysis method than just comparing IR images was explored to assess IR data. Secondly, coupled structural mechanics and heat transfer models of concrete blocks with artificial delaminations used for a field test were developed and analyzed to explore sensitive parameters for effective utilization of IRT. After these finite element (FE) models were validated, critical parameters and factors of delamination detectability such as the size of delamination (area, thickness and volume), ambient temperature and sun loading condition (different season), and the depth of delamination from the surface were explored. This study presents that the area of delamination is much more influential in the detectability of IRT than thickness and volume. It is also found that there is no significant difference depending on the season when IRT is employed. Then, FE model simulations were used to obtain the temperature differences between sound and delaminated areas in order to process IR data. By using this method, delaminated areas of concrete slabs could be detected more objectively than by judging the color contrast of IR images. However, it was also found that the boundary condition affects the accuracy of this method, and the effect varies depending on the data collection time. Even though there are some limitations, integrated use of FE model simulation with IRT showed that the combination can be reduce other pre-tests on bridges, reduce the need to have access to the bridge and also can help automate the IRT data analysis process for concrete bridge deck inspections. After that, the favorable time windows for concrete bridge deck inspections by IRT were explored through field experiment and FE model simulations. Based on the numerical simulations and experimental IRT results, higher temperature differences in the day were observed from both results around noontime and nighttime, although IRT is affected by sun loading during the daytime heating cycle resulting in possible misdetections. Furthermore, the numerical simulations show that the maximum effect occurs at night during the nighttime cooling cycle, and the temperature difference decreases gradually from that time to a few hours after sunrise of the next day. Thus, it can be concluded that the nighttime application of IRT is the most suitable time window for bridge decks. Furthermore, three IR cameras with different specifications were compared to explore several factors affecting the utilization of IRT in regards to subsurface damage detection in concrete structures, specifically when the IRT is utilized for high-speed bridge deck inspections at normal driving speeds under field laboratory conditions. The results show that IRT can detect up to 2.54 cm delamination from the concrete surface at any time period. This study revealed two important factors of camera specifications for high-speed inspection by IRT as shorter integration time and higher pixel resolution. Finally, a real bridge was scanned by three different types of IR cameras and the results were compared with other NDE technologies that were implemented by other researchers on the same bridge. When compared at fully documented locations with 8 concrete cores, a high-end IR camera with cooled detector distinguished sound and delaminated areas accurately. Furthermore, indicated location and shape of delaminations by three IR cameras were compared to other NDE methods from past research, and the result revealed that the cooled camera showed almost identical shapes to other NDE methods including chain drag. It should be noted that the data were collected at normal driving speed without any lane closures, making it a more practical and faster method than other NDE technologies. It was also presented that the factor most likely to affect high-speed application is integration time of IR camera as well as the conclusion of the field laboratory test. The notable contribution of this study for the improvement of IRT is that this study revealed the preferable conditions for IRT, specifically for high-speed scanning of concrete bridge decks. This study shows that IRT implementation under normal driving speeds has high potential to evaluate concrete bridge decks accurately without any lane closures much more quickly than other NDE methods, if a cooled camera equipped with higher pixel resolution is used during nighttime. Despite some limitations of IRT, the data collection speed is a great advantage for periodic bridge inspections compared to other NDE methods. Moreover, there is a high possibility to reduce inspection time, labor and budget drastically if high-speed bridge deck scanning by the combination of IRT and computer vision-based technology becomes a standard bridge deck inspection method. Therefore, the author recommends combined application of the high-speed scanning combination and other NDE methods to optimize bridge deck inspections

    A Data Processing Methodology For Infrared Thermography Images Of Concrete Bridges

    No full text
    This study presents a methodology to improve the usability and efficiency of infrared thermography (IRT) for subsurface damage detection in concrete structures. A practical and more objective approach to obtain a threshold for IRT data processing was developed by incorporating finite element (FE) model simulations. Regarding the temperature thresholds of sound and delaminated areas, the temperature of the sound part was obtained from the IR image, and the temperature of the delaminated area was defined by FE model simulation. With this methodology, delaminated areas of concrete slabs at 1.27 cm and 2.54 cm depths could be detected more objectively than by visually judging the color contrast of IR images. However, it was also found that the boundary condition affects the accuracy of the method, and the effect varies depending on the data collection time. On the other hand, it can be assumed that the influential area of the boundary condition is much smaller than the area of a bridge deck in real structures; thus, it might be ignorable on real concrete bridge decks. Even though there are some limitations, this methodology performed successfully paving the way towards automated IRT data analysis for concrete bridge deck inspections

    Infrared Thermography For Civil Structural Assessment: Demonstrations With Laboratory And Field Studies

    No full text
    A detailed investigation of infrared thermography (IRT) for civil structures is presented by considering different technologies, data analysis methods and experimental conditions in the laboratory and also in the field. Three different types of infrared (IR) camera were compared under active IRT conditions in the laboratory to examine the effect of photography angle on IRT along with the specifications of cameras. It is found that when IR images are taken from a certain angle, each camera shows different temperature readings. However, since each IR camera can capture temperature differences between sound and delaminated areas, they have a potential to detect delaminated area under a given condition in spite of camera specifications even when they are utilized from a certain angle. Furthermore, a more objective data analysis method than just comparing IR images was explored to assess IR data, and it is much easier to detect delamination than raw IR images. Specially designed laboratory and field studies show the capabilities, opportunities and challenges of implementing IRT for civil structures

    Effect Of Defect Size On Subsurface Defect Detectability And Defect Depth Estimation For Concrete Structures By Infrared Thermography

    No full text
    This study aims to reveal the effect and correlation of delamination size and defect shape for using infrared thermography (IRT) through FE modeling to enhance the reliability and applicability of IRT for effective structural inspections. Regarding the effect of delamination size, it is observed that the temperature difference between sound and delaminated area (Δ T) increases as the size of delamination increases; however, Δ T converges to a certain value when the area is 40 × 40 cm and the thickness is 1 cm. As for the shape of delamination, it can be assumed that if the aspect ratio which is the ratio of the length of the shorter side to the longer side of the delamination is more than 25%, Δ T of any delaminations converges to Δ T of the same area of a square/circular-shaped delamination. Furthermore, if the aspect ratio is 25% or smaller, Δ T becomes smaller than the Δ T of the same area of a square/circular-shaped delamination, and it is getting smaller as the ratio becomes smaller. Furthermore, this study attempts to estimate depths of delaminations by using IRT data. Based on the correlation between the size of delamination and the depth from the concrete surface in regard to Δ T, it was assumed that it was possible to estimate the depth of delamination by comparing Δ T from IRT data to Δ T at several depths obtained from FE model simulations. Through the investigation using IRT data from real bridge deck scanning, this study concluded that this estimation method worked properly to provide delamination depth information by incorporating IRT with FE modeling

    Investigation Of Effective Utilization Of Infrared Thermography (Irt) Through Advanced Finite Element Modeling

    No full text
    Infrared thermography (IRT) has been used experimentally for concrete delamination detection. The past studies were conducted with limited experimental conditions, which make a difference in delamination detection. As a result, there are inconsistencies in the results reported in the literature. In this study, heat transfer models of concrete blocks with artificial delamination used for a previous test are developed and analyzed to explore sensitive parameters for effective utilization of IRT. After these FE models are validated, critical parameters and factors of delamination detectability such as the size of delamination (area, thickness and volume), ambient temperature and solar irradiance conditions (different seasons), and the depth of delamination from the surface are explored. This study presents that the area of delamination is much more influential in the detectability of IRT than thickness and volume. It is also found that there is no significant difference depending on the season when IRT is employed. This study shows a potential to bring significant improvement to IRT use in the field for subsurface damage detection for concrete structures

    Dynamic Techno-Ecological Modeling Of Highway Systems: A Case Study Of The Shin-Meishin Expressway In Japan

    No full text
    The Shin-Meishin Expressway is being constructed from Nagoya to Kobe in Japan, and the section from Takatsuki to Kobe is currently under construction as a viable alternative route as opposed to the Meishin Expressway. However, highway construction is usually considered destructive to the natural environment due to the deforestation required during construction, as well as subsequent increases in CO2 emissions upon completion of new highways as new traffic is brought to the area. By applying a system dynamics methodology with respect to the Meishin and Shin-Meishin Expressways, this study analyzes two major effects of new highway construction (CO2 absorption and CO2 emissions) as well as the potential influence of felling, replanting, and/or maintaining the surrounding forest area on the overall CO2 absorption capacity, net CO2 emissions, and total CO2 stock in the analyzed construction area. Regarding CO2 absorption, it was found that, if the portion of the forest felled during construction is very old, new highway construction can help to recover the lost CO2 absorption capacity by planting new trees along the highway, even if the area of planting is much smaller than the area of felling trees. As for CO2 emissions, it was found that mitigating traffic congestion and decreasing the required driving distance can reduce CO2 emissions from the highway(s) in question. Therefore, this study concludes that new highway construction does not always harm the environment regarding CO2 pollution, as the harmful impacts commonly associated with highway construction can be mitigated with other technological and/or ecological mitigation methods

    Monitoring Concrete Bridge Decks Using Infrared Thermography With High Speed Vehicles

    No full text
    There is a need for rapid and objective assessment of concrete bridge decks for maintenance decision making. Infrared Thermography (IRT) has great potential to identify deck delaminations more objectively than routine visual inspections or chain drag tests. In addition, it is possible to collect reliable data rapidly with appropriate IRT cameras attached to vehicles and the data are analyzed effectively. This research compares three infrared cameras with different specifications at different times and speeds for data collection, and explores several factors affecting the utilization of IRT in regards to subsurface damage detection in concrete structures, specifically when the IRT is utilized for high- speed bridge deck inspection at normal driving speeds. These results show that IRT can detect up to 2.54 cm delamination from the concrete surface at any time period. It is observed that nighttime would be the most suitable time frame with less false detections and interferences from the sunlight and less adverse effect due to direct sunlight, making more noise for the IRT results. This study also revealed two important factors of camera specifications for high-speed inspection by IRT as shorter integration time and higher pixel resolution

    Considerations And Issues In The Utilization Of Infrared Thermography For Concrete Bridge Inspection At Normal Driving Speeds

    No full text
    The main objective of this study is to comprehensively evaluate the utilization of infrared thermography (IRT) considering different technologies, critical environmental parameters, and uncertainties for bridge deck evaluation. For this purpose, a real bridge was scanned and the results were compared with other nondestructive evaluation (NDE) technologies that were implemented on the same bridge. There are a number of considerations and factors that affect the utilization of IRT, such as thermal contrasts, camera specifications, distance, and utilization speed, and these are evaluated by using three different infrared (IR) cameras with different specifications. These considerations are discussed and results are presented. When compared at fully documented locations with eight concrete cores, a high-end IR camera with cooled detector distinguished sound and delaminated areas accurately. Furthermore, indicated location and shape of delaminations by three IR cameras were compared with other NDE methods from past research, and the results revealed that the cooled camera showed shapes almost identical to other NDE methods including chain drag. It should be noted that these data were collected at a normal driving speed without any lane closures, making it a more practical and faster method than other NDE technologies. It is also presented that the factor most likely to affect high-speed application is integration time of the IR camera
    corecore