3 research outputs found

    SDSS J080434.20+510349.2: Eclipsing WZ Sge-Type Dwarf Nova with Multiple Rebrightenings

    Full text link
    We observed the 2006 superoutburst of SDSS J080434.20+510349.2 during its plateau phase, rebrightening phase, and post-superoutburst final decline. We found that this object is a grazing eclipsing system with a period of 0.0590048(2) d. Well-defined eclipses were only observed during the late stage of the superoutburst plateau and the depth decreased during the subsequent stages. We determined the superhump period during the superoutburst plateau to be 0.059539(11) d, giving a fractional superhump excess of 0.90(2)%. During the rebrightening and post-superoutburst phases, persisting superhumps with periods longer than those of superhumps during the plateau phase: 0.059632(6) during the rebrightening phase and 0.05969(4) d during the final fading. This phenomenon is very well in line with the previously known long-period "late superhumps" in GW Lib, V455 And and WZ Sge. The amplitudes of orbital humps between different states of rebrightenings suggest that these humps do not arise from the classical hot spot, but are more likely a result of projection effect in a high-inclination system. There was no clear evidence for the enhanced hot spot during the rebrightening phase. We also studied previously reported "mini-outbursts" in the quiescent state and found evidence that superhumps were transiently excited during these mini-outbursts. The presence of grazing eclipses and distinct multiple rebrightenings in SDSS J080434.20+510349.2 would provide a unique opportunity to understanding the mechanism of rebrightenings in WZ Sge-type dwarf novae.Comment: 14 pages, 12 figures, PASJ accepte

    Photometry of three superoutbursts of the SU UMa-type dwarf nova, SW Ursae Majoris

    No full text
    We investigated superhump evolution, analysing optical photometric observations of the 2000 February-March, the 2002 October-November, and the 2006 September superoutbursts of SW UMa. The superhumps evolved in the same way after their appearance during the 2000 and 2002 superoutbursts, and probably during the 2006 one. This indicates that superhump evolution may be governed by invariable binary parameters. We detected a periodicity in the light curve after the end of the 2000 superoutburst without any phase shift, which seems to be the remains of the superhumps. We found QPOs at the end stage of the 2000 and 2002 superoutbursts, but failed to find extraordinarily large-amplitude QPOs, called `super-QPOs', which previously had been observed in SW UMa
    corecore