41 research outputs found
ΠΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΡ Π²Π½ΡΡΡΠΈΡΠ΅ΡΠ΅ΠΏΠ½ΡΡ ΠΎΠΏΡΡ ΠΎΠ»Π΅ΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π΅ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°
The motivation for the present study was the need to develop methods of urgent intraoperative biopsy during surgery for removal of intracranial tumors. Based on the experience of previous joint work of GPI RAS and N.N. Burdenko National Medical Research Center of Neurosurgery to introduce fluorescence spectroscopy methods into clinical practice, an approach combiningΒ various optical-spectral techniques, such as autofluorescence spectroscopy, fluorescence of 5-ALA induced protoporphyrin IX, diffuse reflection of broadband light, which can be used to determine hemoglobin concentration in tissues and their optical density, Raman spectroscopy, which is a spectroscopic method that allows detection of various molecules in tissues by vibrations of individual characteristic molecular bonds. Such a variety of optical and spectral characteristics makes it difficult for the surgeon to analyze them directly during surgery, as it is usually realized in the case of fluorescence methods β tumor tissue can be distinguished from normal with a certain degree of certainty by fluorescence intensity exceedingΒ a threshold value. In case the number of parameters exceeds a couple of dozens, it is necessary to use machine learning algorithmsΒ to build a intraoperative decision support system for the surgeon. This paper presents research in this direction. Our earlier statistical analysis of the optical-spectral features allowed identifyingΒ statistically significant spectral ranges for analysis of diagnosticallyΒ important tissue components. Studies of dimensionality reduction techniques of the optical-spectral feature vector and methods of clustering of the studied samples also allowed us to approach the implementationΒ of the automatic classification method. Importantly, the classification task can be used in two applicationsΒ β to differentiate between different tumors and to differentiate between different parts of the same (center, perifocal zone, normal) tumor. This paper presents the results of our research in the first direction. We investigated the combination of several methods and showed the possibility of differentiating glial and meningeal tumors based on the proposed optical-spectral analysis method.ΠΠΎΡΠΈΠ²Π°ΡΠΈΠ΅ΠΉ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΡ Π½Π°ΡΡΠΎΡΡΠ΅Π³ΠΎ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΏΠΎΡΠ»ΡΠΆΠΈΠ»Π° Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎΡΡΡ ΡΠ°Π·Π²ΠΈΡΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΡΠΎΡΠ½ΠΎΠΉ ΠΈΠ½ΡΡΠ°ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΎΠ½Π½ΠΎΠΉ Π±ΠΈΠΎΠΏΡΠΈΠΈ ΠΏΡΠΈ ΠΏΡΠΎΠ²Π΅Π΄Π΅Π½ΠΈΠΈ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΉ ΠΏΠΎ ΠΏΠΎΠ²ΠΎΠ΄Ρ ΡΠ΄Π°Π»Π΅Π½ΠΈΡ Π²Π½ΡΡΡΠΈΡΠ΅ΡΠ΅ΠΏΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ. ΠΠ° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΎΠΏΡΡΠ° ΠΏΡΠ΅Π΄ΡΠ΄ΡΡΠ΅ΠΉ ΡΠΎΠ²ΠΌΠ΅ΡΡΠ½ΠΎΠΉ ΡΠ°Π±ΠΎΡΡ ΠΠΠ€ Π ΠΠ ΠΈ ΠΠΠΠ¦ Π½Π΅ΠΉΡΠΎΡ
ΠΈΡΡΡΠ³ΠΈΠΈΒ ΠΈΠΌ. Π.Π. ΠΡΡΠ΄Π΅Π½ΠΊΠΎ ΠΏΠΎ Π²Π½Π΅Π΄ΡΠ΅Π½ΠΈΡ Π² ΠΊΠ»ΠΈΠ½ΠΈΡΠ΅ΡΠΊΡΡ ΠΏΡΠ°ΠΊΡΠΈΠΊΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ Π±ΡΠ» ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π½ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄, ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΡΡΡΠΈΠΉ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅Β ΠΌΠ΅ΡΠΎΠ΄ΠΈΠΊΠΈ, ΡΠ°ΠΊΠΈΠ΅ ΠΊΠ°ΠΊ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΒ Π°ΡΡΠΎΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ, ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈΒ 5-ΠΠΠ ΠΈΠ½Π΄ΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎΒ ΠΏΡΠΎΡΠΎΠΏΠΎΡΡΠΈΡΠΈΠ½Π°Β IX, Π΄ΠΈΡΡΡΠ·Π½ΠΎΠ³ΠΎΒ ΠΎΡΡΠ°ΠΆΠ΅Π½ΠΈΡΒ ΡΠΈΡΠΎΠΊΠΎΠΏΠΎΠ»ΠΎΡΠ½ΠΎΠ³ΠΎ ΠΈΠ·Π»ΡΡΠ΅Π½ΠΈΡ,Β ΠΏΠΎ ΠΊΠΎΡΠΎΡΠΎΠΌΡ ΠΌΠΎΠΆΠ½ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΡΡ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡ Π³Π΅ΠΌΠΎΠ³Π»ΠΎΠ±ΠΈΠ½Π° Π² ΡΠΊΠ°Π½ΡΡ
ΠΈ ΠΈΡ
ΠΎΠΏΡΠΈΡΠ΅ΡΠΊΡΡΒ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΡ,Β ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΡΒ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΎΠ½Π½ΠΎΠ³ΠΎΒ ΡΠ°ΡΡΠ΅ΡΠ½ΠΈΡ, ΡΠ²Π»ΡΡΡΠ°ΡΡΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠΌ ΠΌΠΎΠ»Π΅ΠΊΡΠ»ΡΡΠ½ΠΎΠΉ ΡΠΏΠ΅ΠΊΡΡΠΎΡΠΊΠΎΠΏΠΈΠΈ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡΠΈΠΌ Π΄Π΅ΡΠ΅ΠΊΡΠΈΡΠΎΠ²Π°ΡΡ ΡΠ°Π·Π»ΠΈΡΠ½ΡΠ΅ ΠΌΠΎΠ»Π΅ΠΊΡΠ»Ρ Π² ΡΠΊΠ°Π½ΡΡ
Π·Π° ΡΡΠ΅ΡΠ° ΠΊΠΎΠ»Π΅Π±Π°Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠ½ΡΡ
ΡΠ²ΡΠ·Π΅ΠΉ Π² ΠΌΠΎΠ»Π΅ΠΊΡΠ»Π°Ρ
. Π’Π°ΠΊΠΎΠ΅ ΡΠ°Π·Π½ΠΎΠΎΠ±ΡΠ°Π·ΠΈΠ΅ ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΒ Π·Π°ΡΡΡΠ΄Π½ΡΠ΅Ρ ΠΈΡ
Π½Π΅ΠΏΠΎΡΡΠ΅Π΄ΡΡΠ²Π΅Π½Π½ΡΠΉ Π°Π½Π°Π»ΠΈΠ· Ρ
ΠΈΡΡΡΠ³ΠΎΠΌ Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ, ΠΊΠ°ΠΊ ΡΡΠΎ ΠΎΠ±ΡΡΠ½ΠΎ ΡΠ΅Π°Π»ΠΈΠ·ΡΠ΅ΡΡΡ Π² ΡΠ»ΡΡΠ°Π΅ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² β ΠΏΠΎ ΠΏΡΠ΅Π²ΡΡΠ΅Π½ΠΈΡ Π½Π΅ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΏΠΎΡΠΎΠ³Π° ΠΈΠ½ΡΠ΅Π½ΡΠΈΠ²Π½ΠΎΡΡΠΈ ΡΠ»ΡΠΎΡΠ΅ΡΡΠ΅Π½ΡΠΈΠΈ Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½ΠΎΠΉ ΡΡΠ΅ΠΏΠ΅Π½ΡΡ Π΄ΠΎΡΡΠΎΠ²Π΅ΡΠ½ΠΎΡΡΠΈ ΠΌΠΎΠΆΠ½ΠΎ ΡΡΠ΄ΠΈΡΡ ΠΎ ΡΠΎΠΌ, Π½Π°Ρ
ΠΎΠ΄ΠΈΡΡΡ Π»ΠΈ Π² Π·ΠΎΠ½Π΅ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π½ΠΎΡΠΌΠ°Π»ΡΠ½Π°Ρ ΠΈΠ»ΠΈ ΠΎΠΏΡΡ
ΠΎΠ»Π΅Π²Π°Ρ ΡΠΊΠ°Π½Ρ. Π ΡΠ»ΡΡΠ°Π΅, Π΅ΡΠ»ΠΈ ΡΠΈΡΠ»ΠΎ ΠΏΠ°ΡΠ°ΠΌΠ΅ΡΡΠΎΠ² ΠΏΡΠ΅Π²ΡΡΠ°Π΅Ρ ΠΏΠ°ΡΡ Π΄Π΅ΡΡΡΠΊΠΎΠ², Π½Π΅ΠΎΠ±Ρ
ΠΎΠ΄ΠΈΠΌΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΏΠΎΡΡΡΠΎΠ΅Π½ΠΈΡΒ ΡΠΈΡΡΠ΅ΠΌΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ ΠΏΡΠΈΠ½ΡΡΠΈΡΒ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ Ρ
ΠΈΡΡΡΠ³Π°Β Π²ΠΎ Π²ΡΠ΅ΠΌΡ ΠΎΠΏΠ΅ΡΠ°ΡΠΈΠΈ. ΠΠ°ΡΡΠΎΡΡΠ°Ρ ΡΠ°Π±ΠΎΡΠ° ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»ΡΠ΅Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² ΡΡΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ. ΠΡΠΎΠ²Π΅Π΄Π΅Π½Π½ΡΠΉ Π½Π°ΠΌΠΈ ΡΠ°Π½Π΅Π΅ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΠΉΒ Π°Π½Π°Π»ΠΈΠ· Π΄Π°Π½Π½ΡΡ
ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΒ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ» Π²ΡΠ΄Π΅Π»ΠΈΡΡ ΡΡΠ°ΡΠΈΡΡΠΈΡΠ΅ΡΠΊΠΈΒ Π·Π½Π°ΡΠΈΠΌΡΠ΅ ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΠ΅ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Ρ Π΄Π»Ρ Π°Π½Π°Π»ΠΈΠ·Π°, ΡΠ΅ΠΏΡΠ΅Π·Π΅Π½ΡΠΈΡΡΡΡΠΈΠ΅Β Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΡΠ΅ΡΠΊΠΈΒ Π²Π°ΠΆΠ½ΡΠ΅ ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½ΡΡ ΡΠΊΠ°Π½Π΅ΠΉ. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΏΠΎΠ½ΠΈΠΆΠ΅Π½ΠΈΡ ΡΠ°Π·ΠΌΠ΅ΡΠ½ΠΎΡΡΠΈ Π²Π΅ΠΊΡΠΎΡΠ° ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΡΡ
ΠΏΡΠΈΠ·Π½Π°ΠΊΠΎΠ²Β ΠΈ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΊΠ»Π°ΡΡΠ΅ΡΠΈΠ·Π°ΡΠΈΠΈ ΠΈΡΡΠ»Π΅Π΄ΡΠ΅ΠΌΡΡ
ΠΎΠ±ΡΠ°Π·ΡΠΎΠ² ΡΠ°ΠΊΠΆΠ΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΈ ΠΏΡΠΈΠ±Π»ΠΈΠ·ΠΈΡΡΡΡ ΠΊ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΌΠ΅ΡΠΎΠ΄Π° Π°Π²ΡΠΎΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΎΠΉ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ. ΠΠ°ΠΆΠ½ΠΎ ΠΎΡΠΌΠ΅ΡΠΈΡΡ, ΡΡΠΎ Π·Π°Π΄Π°ΡΠ° ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ ΠΌΠΎΠΆΠ΅Ρ Π±ΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½Π° Π² Π΄Π²ΡΡ
ΠΏΡΠΈΠ»ΠΎΠΆΠ΅Π½ΠΈΡΡ
β Π΄Π»Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ ΠΈ Π΄Π»Ρ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΡΠ°ΡΡΠ΅ΠΉ ΠΎΠ΄Π½ΠΎΠΉ (ΡΠ΅Π½ΡΡ, ΠΏΠ΅ΡΠΈΡΠΎΠΊΠ°Π»ΡΠ½Π°Ρ Π·ΠΎΠ½Π°, Π½ΠΎΡΠΌΠ°) ΠΎΠΏΡΡ
ΠΎΠ»ΠΈ. Π Π½Π°ΡΡΠΎΡΡΠ΅ΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ Π½Π°ΡΠΈΡ
ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΠΉ Π² ΠΏΠ΅ΡΠ²ΠΎΠΌ Π½Π°ΠΏΡΠ°Π²Π»Π΅Π½ΠΈΠΈ. ΠΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π»ΠΈ ΡΠΎΡΠ΅ΡΠ°Π½ΠΈΠ΅ Π½Π΅ΡΠΊΠΎΠ»ΡΠΊΠΈΡ
ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ Π³Π»ΠΈΠ°Π»ΡΠ½ΡΡ
ΠΈ ΠΌΠ΅Π½ΠΈΠ½Π³Π΅Π°Π»ΡΠ½ΡΡ
ΠΎΠΏΡΡ
ΠΎΠ»Π΅ΠΉ Π½Π° ΠΎΡΠ½ΠΎΠ²Π°Π½ΠΈΠΈ ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅ΡΠΎΠ΄Π° ΠΎΠΏΡΠΈΠΊΠΎ-ΡΠΏΠ΅ΠΊΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π°
The dipolar endofullerene HF@C60
The cavity inside fullerenes provides a unique environment for the study of isolated atoms and molecules. We report encapsulation of hydrogen fluoride inside C60 using molecular surgery to give the endohedral fullerene HF@C60. The key synthetic step is the closure of the open fullerene cage while minimizing escape of HF. The encapsulated HF molecule moves freely inside the cage and exhibits quantization of its translational and rotational degrees of freedom, as revealed by inelastic neutron scattering and infrared spectroscopy. The rotational and vibrational constants of the encapsulated HF molecules were found to be redshifted relative to free HF. The NMR spectra display a large 1H-19F J coupling typical of an isolated species. The dipole moment of HF@C60 was estimated from the temperature-dependence of the dielectric constant at cryogenic temperatures and showed that the cage shields around 75% of the HF dipole