130 research outputs found

    Sars-Cov-2 Serostatus and Covid-19 Illness Characteristics By Variant Time Period in Non-Hospitalized Children and adolescents

    Get PDF
    OBJECTIVE: to describe COVID-19 illness characteristics, risk factors, and SARS-CoV-2 serostatus by variant time period in a large community-based pediatric sample. DESIGN: Data were collected prospectively over four timepoints between October 2020 and November 2022 from a population-based cohort ages 5 to 19 years old. SETTING: State of Texas, USA. PARTICIPANTS: Participants ages 5 to 19 years were recruited from large pediatric healthcare systems, Federally Qualified Healthcare Centers, urban and rural clinical practices, health insurance providers, and a social media campaign. EXPOSURE: SARS-CoV-2 infection. MAIN OUTCOME(S) AND MEASURE(S): SARS-CoV-2 antibody status was assessed by the Roche Elecsys RESULTS: Over half (57.2%) of the sample (N = 3911) was antibody positive. Symptomatic infection increased over time from 47.09% during the pre-Delta variant time period, to 76.95% during Delta, to 84.73% during Omicron, and to 94.79% during the Omicron BA.2. Those who were not vaccinated were more likely (OR 1.71, 95% CI 1.47, 2.00) to be infected versus those fully vaccinated. CONCLUSIONS: Results show an increase in symptomatic COVID-19 infection among non-hospitalized children with each progressive variant over the past two years. Findings here support the public health guidance that eligible children should remain up to date with COVID-19 vaccinations

    Methodology to Estimate Natural- and Vaccine-induced antibodies to Sars-Cov-2 in a Large Geographic Region

    Get PDF
    Accurate estimates of natural and/or vaccine-induced antibodies to SARS-CoV-2 are difficult to obtain. Although model-based estimates of seroprevalence have been proposed, they require inputting unknown parameters including viral reproduction number, longevity of immune response, and other dynamic factors. In contrast to a model-based approach, the current study presents a data-driven detailed statistical procedure for estimating total seroprevalence (defined as antibodies from natural infection or from full vaccination) in a region using prospectively collected serological data and state-level vaccination data. Specifically, we conducted a longitudinal statewide serological survey with 88,605 participants 5 years or older with 3 prospective blood draws beginning September 30, 2020. Along with state vaccination data, as of October 31, 2021, the estimated percentage of those 5 years or older with naturally occurring antibodies to SARS-CoV-2 in Texas is 35.0% (95% CI = (33.1%, 36.9%)). This is 3× higher than, state-confirmed COVID-19 cases (11.83%) for all ages. The percentage with naturally occurring or vaccine-induced antibodies (total seroprevalence) is 77.42%. This methodology is integral to pandemic preparedness as accurate estimates of seroprevalence can inform policy-making decisions relevant to SARS-CoV-2

    Antibody Duration after infection From Sars-Cov-2 in the Texas Coronavirus antibody Response Survey

    Get PDF
    Understanding the duration of antibodies to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus that causes COVID-19 is important to controlling the current pandemic. Participants from the Texas Coronavirus Antibody Response Survey (Texas CARES) with at least 1 nucleocapsid protein antibody test were selected for a longitudinal analysis of antibody duration. A linear mixed model was fit to data from participants (n = 4553) with 1 to 3 antibody tests over 11 months (1 October 2020 to 16 September 2021), and models fit showed that expected antibody response after COVID-19 infection robustly increases for 100 days postinfection, and predicts individuals may remain antibody positive from natural infection beyond 500 days depending on age, body mass index, smoking or vaping use, and disease severity (hospitalized or not; symptomatic or not)

    Balancing Detection and Eradication for Control of Epidemics: Sudden Oak Death in Mixed-Species Stands

    Get PDF
    Culling of infected individuals is a widely used measure for the control of several plant and animal pathogens but culling first requires detection of often cryptically-infected hosts. In this paper, we address the problem of how to allocate resources between detection and culling when the budget for disease management is limited. The results are generic but we motivate the problem for the control of a botanical epidemic in a natural ecosystem: sudden oak death in mixed evergreen forests in coastal California, in which species composition is generally dominated by a spreader species (bay laurel) and a second host species (coast live oak) that is an epidemiological dead-end in that it does not transmit infection but which is frequently a target for preservation. Using a combination of an epidemiological model for two host species with a common pathogen together with optimal control theory we address the problem of how to balance the allocation of resources for detection and epidemic control in order to preserve both host species in the ecosystem. Contrary to simple expectations our results show that an intermediate level of detection is optimal. Low levels of detection, characteristic of low effort expended on searching and detection of diseased trees, and high detection levels, exemplified by the deployment of large amounts of resources to identify diseased trees, fail to bring the epidemic under control. Importantly, we show that a slight change in the balance between the resources allocated to detection and those allocated to control may lead to drastic inefficiencies in control strategies. The results hold when quarantine is introduced to reduce the ingress of infected material into the region of interest

    Theoretical Analysis the Optical Properties of Multi-coupled Silver Nanoshell Particles

    Get PDF
    The surface plasmon resonances of silver nanoshell particles are studied by Green’s function. The nanoshell system of plasmon resonances results from the coupling of the inner and outer shell surface plasmon. The shift of the nanoshell plasmon resonances wavelength is plotted against with different dielectric environments, several different dielectric cores, the ratio of the inner and outer radius, and also its assemblies. The results show that a red- and blue-shifted localized surface plasmon can be tuned over an extended wavelength range by varying dielectric environments, the dielectric constants and the radius of nanoshell core respectively. In addition, the separation distances, the distribution of electrical field intensity, the incident directions and its polarizations are also investigated. The study is useful to broaden the application scopes of Raman spectroscopy and nano-optics

    Re-Shuffling of Species with Climate Disruption: A No-Analog Future for California Birds?

    Get PDF
    By facilitating independent shifts in species' distributions, climate disruption may result in the rapid development of novel species assemblages that challenge the capacity of species to co-exist and adapt. We used a multivariate approach borrowed from paleoecology to quantify the potential change in California terrestrial breeding bird communities based on current and future species-distribution models for 60 focal species. Projections of future no-analog communities based on two climate models and two species-distribution-model algorithms indicate that by 2070 over half of California could be occupied by novel assemblages of bird species, implying the potential for dramatic community reshuffling and altered patterns of species interactions. The expected percentage of no-analog bird communities was dependent on the community scale examined, but consistent geographic patterns indicated several locations that are particularly likely to host novel bird communities in the future. These no-analog areas did not always coincide with areas of greatest projected species turnover. Efforts to conserve and manage biodiversity could be substantially improved by considering not just future changes in the distribution of individual species, but including the potential for unprecedented changes in community composition and unanticipated consequences of novel species assemblages
    • …
    corecore