7 research outputs found

    Cumulative structure function in terms of nucleonic wave function of the nucleus

    Full text link
    The structure function of the nucleus in the cumulative region x>1x>1 is studied in terms of nucleon degrees of freedom. At high Q2Q^2 the resulting expressions are presented as a sum of contributions from few-nucleon correlations. Two-nucleon correlations are studied in some detail. Spin variables are averaged out. In the region 1<x<21<x<2 the structure functions are calculated for the relativistic interaction proposed by F.Gross {\it et al}. They are found to fall with xx faster than the exponential. For Carbon at x=1.05x=1.05, where the method is not rigorously applicable, they turn out to be rougly twice larger than the experimental data.Comment: text and 2 figures in LaTex, 7 figures in P

    Lessons in theory of change: experiences from CCAFS

    Get PDF
    CGIAR is moving to a different model of doing science, and this needs to be well thought out and understood by centres, CRP researchers and partners. The focus can no longer be on research deliverables such as reports, trainings, crop varieties and decision support tools. We have learnt that the production of these deliverables doesn’t automatically lead to impact in terms of the wellbeing of smallholder famers, the end users of our research.This series of Climate Change and Social Learning (CCSL) briefs will focus on lessons learnt from the ongoing CCAFS experience with TOC. The objective is to share experiences in real time, and generate discussion that will help CCAFS and others improve their TOC, impact pathways and M+E

    Impaired 2’-3’-dideoxy-3’-thiacytidine accumulation in CEM lymphoblastoid cells as a mechanism of acquired resistance independent of MRP4 with a possible role for ABCC11.

    No full text
    We have developed a human T lymphoblastoid cell line (CEM3TC) that is selectively resistant to the anti-proliferative effect of 2',3'-dideoxy-3'-thiacytidine (3TC) because the CEM3TC cells were equally sensitive to AZT, as well as the antimitotic agent, vinblastine. The anti-retroviral activity of 3TC against HIV-1 was also severely impaired in the CEM3TC cells. Despite similar deoxycytidine kinase activity and unchanged uptake of nucleosides such as AZT and 2'-deoxycytidine, CEM3TC had profoundly impaired 3TC accumulation. Further studies indicated that CEM3TC, retained much less 3TC. However, despite a small overexpression of multidrug resistance protein (MRP) 4, additional studies with cells specifically engineered to overexpress MRP4 demonstrated there was no impact on either 3TC accumulation or efflux. Finally, an increased expression of the MRP5 homologue, ATP-binding cassette C11 (ABCC11) was observed in the CEM3TC Cells' We speculate that the decreased 3TC accumulation in the CEM3TC might be due to the upregulation of ABCC11

    Ambivalent bacteriophages of different species active on Escherichia coli K12 and Salmonella sps. strains

    No full text
    A study was made of several bacteriophages (including phages U2 and LB related to T-even phages of Escherichia coli) that grow both on E. coli K12 and on some Salmonella strains. Such phages were termed ambivalent. T-even ambivalent phages (U2 and LB) are rare and have a limited number of hosts among Salmonella strains. U2 and LB are similar to canonical E. coli-specific T-even phages in morphological type and size of the phage particle and in reaction with specific anti-T4 serum. Phages U2 and LB have identical sets of structural proteins, some of which are similar in size to structural proteins of phages T2 and T4. DNA restriction patterns of phages U2 and LB differ from each other and from those of T2 and T4. Still, DNAs of all four phages have considerable homology. Unexpectedly, phages U2 and LB grown on Salmonella bungori were unstable during centrifugation in a CsCl gradient. Ambivalent bacteriophages were found in species other than T-even phages and were similar in morphotype to lambdoid and other E. coli phages. One of the ambivalent phages was highly similar to well-known Felix01, which is specific for Salmonella. Ambivalent phages can be used to develop a new set for phage typing in Salmonella. An obvious advantage is that ambivalent phages can be reproduced in the E. coli K12 laboratory strain, which does not produce active temperate phages. Consequently, the resulting typing phage preparation is devoid of an admixture of temperate phages, which are common in Salmonella. The presence of temperate phages in phage-typing preparations may cause false-positive results in identifying specific Salmonella strains isolated from the environment or salmonellosis patients. Ambivalent phages are potentially useful for phage therapy and prevention of salmonellosis in humans and animals
    corecore