11 research outputs found

    An Analogue Front-End System with a Low-Power On-Chip Filter and ADC for Portable ECG Detection Devices

    Get PDF
    Medical diagnostic instruments can be made into portable devices for the purpose of home care, such as the diagnosis of heart disease. These assisting devices are not only used to monitor patients but are also beneficial as handy and convenient medical instruments. Hence, for reasons of both portability and durability, designers should reduce the power consumption of assistant devices as much as possible to extend their battery lifetime. However, achieving the low power requirement of the ECG sensing and the processing board for the ECG with commercial discrete components (A21-0003) is difficult because the low power consumer electronics for ECG acquisition systems are not yet available. With the help of the integrated circuit technology, the power-saving requirement of portable and durable equipment gives circuit designers the impetus to reduce the power consumption of analogue front-end circuits in ECG acquisition systems. In addition, the analogue front-end circuits, which are the interface between physical signals and the digital processor, must be operated at a low-supply voltage to be integrated into the low-voltage system-on-a-chip (SOC) system (Eshraghian, 2006). Therefore, the chapter will present two design examples of low-voltage (1 V) and low-power (<1 W) on-chip circuits including a low-pass filter (LPF) and an analogue-to-digital converter (ADC) to demonstrate the possibility of developing the low-voltage low-power ECG acquisition SO

    Low-Voltage OTA–C Filter With an Area- and Power-Efficient OTA for Biosignal Sensor Applications

    No full text

    Low-Power Analog Integrated Circuits for Wireless ECG Acquisition Systems

    No full text

    NCKU CBIC ECG Database

    No full text
    AbstractThe NCKU CBIC ECG database collects ECG data from 6 different patients. The patients information have been processed for anonymization, and each patient has signed a consent form to ensure the legitimacy of data usage. Each patient collects lead II ECG for four hours a day to highlight patients' different physiological meanings at different times of the day, and the database provides the labels for motion artifact and baseline wandering, which are invalid signal for diagnosis. Prevent physicians from using the noise signal to diagnose. These data were collected using Patch[1] at Ministry of Health and Welfare Tainan Hospital, and the included data have been approved by the Institutional Review Board (IRB).BackgroundTechnology and medical treatment are highly developed in the 21st century, and people have more irregular daily routines and greater life pressure. Cardiovascular disease has become a tough nut to crack when the changing of lifestyle is coupled with the aging of society. The age distribution of patients is wider than ever. A wealth of health information can be obtained through electrocardiogram (ECG) measurement, including cardiac arrhythmias. Severe arrhythmias will lead to many life problems, including palpitations, chest tightness, dizziness, shock, and even life-threatening conditions. Therefore, the monitoring of ECG signal is quite essential.To do our part in the study of arrhythmia, our team started the patient enrollment after gaining the permission of the National Cheng Kung University Hospital Institutional Review Board (NCKUH IRB No. B-ER-104-379) from 2018. We have selected total 128 patients' 24 hours ECG data until now. The results of the arrhythmia label are confirmed by the cardiologist Ju-Yi Chen in NCKUH. Finally, We selected 6 patients from the received signals and made them into a database for researchers to access.MethodsThe NCKU CBIC ECG database contains the ECG recordings from 6 subjects. The signals were collected in Tainan Hospital (Ministry of Health and Welfare) via an ECG acquisition device[1] developed by Your health technology Co., Ltd. The sampling frequency is 400Hz, and the ADC resolution is 12 bits.The age distribution of subjects was from 24 to 76 years old, and each patient was measured at the lead II for 24 hours. After the signal is recorded, four cleaner segments in the morning, noon, evening, and midnight are selected, and each segment is one hour long. The heartbeat of human body is different when sleeping and awake, and some arrhythmia type occurs at sleeping period often. It's hard to detect some arrhythmia at specific time of a day, therefore, we choose signal segments from different time period for a patient, which is more representative of the daily heartbeat condition. It's worth mentioning that the ECG signals from the 6th subject contains too many noise signals in the daytime due to his career type, so the segments from 22:00 to 02:00 are selected.We have collected total 128 patients from Tainan Hospital since 2018. Since most of the ECG data of patients are normal beats, we finally selected the ECG data of six patients which contain clinically significant arrhythmia. The database provides two particular label type for motion artifact and baseline wandering, which are caused by body movement during ECG acquisition. In actual situations, cardiologist doesn't use the noise signals as a basis for diagnosis, therefore, these two specific labels prevent physicians from using noise to make a diagnosis.The original data is first compared with the holter report, and the R peak position and beat labels are manually marked. And then the data were given to a professional cardiologist, Ju-Yi, Chen, for verification. The cardiologist checked the correction and position of beat labels, and chose the acceptable signal segmentation for high quality.Introduction of Ju-Yi, Chen :JU-YI CHEN was born in Tainan, Taiwan, in 1974. He received the M.S. degree from Chang Gung University, Taoyuan City, Taiwan, in 1999 and the Ph.D. degree from the National Cheng Kung University, Tainan, in 2013. Since 2021, he has been a Professor at the Department of Internal Medicine, National Cheng Kung University. His current research interests include the cardiovascular diseases, including arrhythmias, hypertension, arterial stiffness, and cardiac implantable electric devices.Data DescriptionThe file structure and naming rule are described as follows :[The subject number]_[The measurement time] : The directory nameOUTPUT_ECG_data.csv : The one-hour ECG signals ( unit : 0.1V )OUTPUT_peak_label.csv : The arrhythmia type label of R-peakOUTPUT_peak_position.csv : The position of R-peakex : 1_0100 directory contains subject No. 1's data which is measured at 01:00.Arrhythmia diseases and the corresponding label codes :Code Arrhythmia Disease—————————————————————0 Normal1 Atrial Fibrillation2 Supraventricular Tachycardia3 Premature Ventricular Contraction4 Atrial Premature Contraction5 Motion Artifact6 Wandering7 First degree AV block8 Atrial FlutterPS : Wandering represents baseline drifted by 1mV.Patient information :Subject 1: Male,61 yearsSubject 2: Female,77 yearsSubject 3: Male,63 yearsSubject 4: Male,64 yearsSubject 5: Male,24 yearsSubject 6: Male,64 yearsUsage NotesFew public ECG databases provide long-term ECG, our goal in creating the database is to help understand what a person's ECG looks like in a day, and this database is more valuable in obtaining long-term ECG.EthicsOur team has cooperated with National Cheng Kung University Hospital and Tainan Hospital. All the patients enrolled gave their informed consent to participate in the study. The certification of safety-related IEC standards and human study approval are all acquired.Conflicts of InterestThe authors declare that there are no known conflicts of interest.ReferencesS.-Y. Lee, P.-W. Huang, M.-C. Liang, J.-H. Hong, and J.-Y. Chen, "Development of an arrhythmia monitoring system and human study," IEEE Transactions on Consumer Electronics, vol. 64, no. 4, pp. 442-451, 2018.</ol

    Low-Power Fifth-Order Butterworth OTA-C Low-Pass Filter with an Impedance Scaler for Portable ECG Applications

    No full text

    Efficient Four-Coil Wireless Power Transfer for Deep Brain Stimulation

    No full text

    Urine High-Sensitivity Troponin I Predict Incident Cardiovascular Events in Patients with Diabetes Mellitus

    No full text
    In patients with diabetes mellitus (DM), incident cardiovascular (CV) events are associated with poor long-term outcomes. Serum high-sensitivity troponin I (hs-TnI) is widely used to diagnose and predict outcomes in patients with acute coronary syndrome, however, few studies have investigated the accuracy of urine hs-TnI as a predictor for incident CV events in patients with DM. The enrolled participants included patients with DM. Fresh urine hs-TnI levels were measured. Medical records of enrolled patients were used to determine the number of incident CV events prospectively for 3 months. The study cohort comprised 378 participants. We observed significantly higher levels of urine hs-TnI in those with than without subsequent incident CV events. The multivariate logistic regression analysis using different models consistently showed that urine hs-TnI &gt; 4.10 pg/mL was an independent factor predictive of incident CV events. The ROC-AUC analysis revealed that the optimal cutoff value for urine hs-TnI for predicting incident CV events was 1.55 pg/mL and the area was 0.611 (p = 0.027). A single measurement of urinary hs-TnI, collected easily and non-invasively, may be an acceptable biomarker for predicting subsequent incident CV events in patients with DM
    corecore