174 research outputs found
Virtual turning points and bifurcation of Stokes curves for higher order ordinary differential equations
For a higher order linear ordinary differential operator P, its Stokes curve
bifurcates in general when it hits another turning point of P. This phenomenon
is most neatly understandable by taking into account Stokes curves emanating
from virtual turning points, together with those from ordinary turning points.
This understanding of the bifurcation of a Stokes curve plays an important role
in resolving a paradox recently found in the Noumi-Yamada system, a system of
linear differential equations associated with the fourth Painleve equation.Comment: 7 pages, 4 figure
Nambu-Hamiltonian flows associated with discrete maps
For a differentiable map that has
an inverse, we show that there exists a Nambu-Hamiltonian flow in which one of
the initial value, say , of the map plays the role of time variable while
the others remain fixed. We present various examples which exhibit the map-flow
correspondence.Comment: 19 page
Semiclassical transmission across transition states
It is shown that the probability of quantum-mechanical transmission across a
phase space bottleneck can be compactly approximated using an operator derived
from a complex Poincar\'e return map. This result uniformly incorporates
tunnelling effects with classically-allowed transmission and generalises a
result previously derived for a classically small region of phase space.Comment: To appear in Nonlinearit
Level statistics and eigenfunctions of pseudointegrable systems: dependence on energy and genus number
We study the level statistics (second half moment and rigidity
) and the eigenfunctions of pseudointegrable systems with rough
boundaries of different genus numbers . We find that the levels form energy
intervals with a characteristic behavior of the level statistics and the
eigenfunctions in each interval. At low enough energies, the boundary roughness
is not resolved and accordingly, the eigenfunctions are quite regular functions
and the level statistics shows Poisson-like behavior. At higher energies, the
level statistics of most systems moves from Poisson-like towards Wigner-like
behavior with increasing . Investigating the wavefunctions, we find many
chaotic functions that can be described as a random superposition of regular
wavefunctions. The amplitude distribution of these chaotic functions
was found to be Gaussian with the typical value of the localization volume
. For systems with periodic boundaries we find
several additional energy regimes, where is relatively close to the
Poisson-limit. In these regimes, the eigenfunctions are either regular or
localized functions, where is close to the distribution of a sine or
cosine function in the first case and strongly peaked in the second case. Also
an interesting intermediate case between chaotic and localized eigenfunctions
appears
Periodic Orbits and Spectral Statistics of Pseudointegrable Billiards
We demonstrate for a generic pseudointegrable billiard that the number of
periodic orbit families with length less than increases as , where is a constant and is the average area occupied by these families. We also find that
increases with before saturating. Finally, we show
that periodic orbits provide a good estimate of spectral correlations in the
corresponding quantum spectrum and thus conclude that diffraction effects are
not as significant in such studies.Comment: 13 pages in RevTex including 5 figure
Slow relaxation to equipartition in spring-chain systems
In this study, one-dimensional systems of masses connected by springs, i.e.,
spring-chain systems, are investigated numerically. The average kinetic energy
of chain-end particles of these systems is larger than that of other particles,
which is similar to the behavior observed for systems made of masses connected
by rigid links. The energetic motion of the end particles is, however,
transient, and the system relaxes to thermal equilibrium after a while, where
the average kinetic energy of each particle is the same, that is, equipartition
of energy is achieved. This is in contrast to the case of systems made of
masses connected by rigid links, where the energetic motion of the end
particles is observed in equilibrium. The timescale of relaxation estimated by
simulation increases rapidly with increasing spring constant. The timescale is
also estimated using the Boltzmann-Jeans theory and is found to be in quite
good agreement with that obtained by the simulation
Slow relaxation in weakly open vertex-splitting rational polygons
The problem of splitting effects by vertex angles is discussed for
nonintegrable rational polygonal billiards. A statistical analysis of the decay
dynamics in weakly open polygons is given through the orbit survival
probability. Two distinct channels for the late-time relaxation of type
1/t^delta are established. The primary channel, associated with the universal
relaxation of ''regular'' orbits, with delta = 1, is common for both the closed
and open, chaotic and nonchaotic billiards. The secondary relaxation channel,
with delta > 1, is originated from ''irregular'' orbits and is due to the
rationality of vertices.Comment: Key words: Dynamics of systems of particles, control of chaos,
channels of relaxation. 21 pages, 4 figure
- …