52 research outputs found

    Ballistic Target PHD Filter Based on Infrared Focal Plane Ambiguous Observation

    Get PDF
    Space-based early warning system, the main detection means of which is passive detection based on focal plane, is an important part of ballistic missile defense system. The focal plane is mainly composed of CCD, and its size can reach the micron level, so the pixel is often regarded as point of no area in image postprocessing. The design of traditional tracking methods is based on this, and the observation based on the focal plane is modeled as the azimuth with random noise. However, this modeling is inaccurate. In the context of space-based detection, CCD cannot be simplified as a point, and its size should be considered. And the corresponding observation cannot be treated as azimuth with random noise. In this paper, the observation based on focal plane is modeled as Unambiguously Generated Ambiguous (UGA) measurement. The PHD filter algorithm is redesigned and simplified. The simulation results show that the algorithm based on UGA measurement observation model has better tracking effect compared with that based on traditional observation model. This method provides technical support for more accurate target tracking for space-based early warning system

    Sparse Representation Based Binary Hypothesis Model for Hyperspectral Image Classification

    Get PDF
    The sparse representation based classifier (SRC) and its kernel version (KSRC) have been employed for hyperspectral image (HSI) classification. However, the state-of-the-art SRC often aims at extended surface objects with linear mixture in smooth scene and assumes that the number of classes is given. Considering the small target with complex background, a sparse representation based binary hypothesis (SRBBH) model is established in this paper. In this model, a query pixel is represented in two ways, which are, respectively, by background dictionary and by union dictionary. The background dictionary is composed of samples selected from the local dual concentric window centered at the query pixel. Thus, for each pixel the classification issue becomes an adaptive multiclass classification problem, where only the number of desired classes is required. Furthermore, the kernel method is employed to improve the interclass separability. In kernel space, the coding vector is obtained by using kernel-based orthogonal matching pursuit (KOMP) algorithm. Then the query pixel can be labeled by the characteristics of the coding vectors. Instead of directly using the reconstruction residuals, the different impacts the background dictionary and union dictionary have on reconstruction are used for validation and classification. It enhances the discrimination and hence improves the performance

    Optimization design for roadheader cutting head by orthogonal experiment and finite element analysis

    Get PDF
    U radu se istražuje optimizacija konstrukcije rezne glave stroja za bušenje. U tu su svrhu kao varijable optimizacije izabrani brzina rotacije, brzina oscilacije, rezni kutovi pijuka i kutovi nagiba pijuka, a kao ciljevi optimizacije izabrani su srednja vrijednost rezultirajuće sile i koeficijent varijacije reznog opterećenja. Učinci ovih parametara na indekse evaluacije analiziraju se ortogonalnim eksperimentom i analizom konačnih elemenata. Također je provedena analiza promjene trenda indeksa evaluacije s promjenama eksperimentalnih čimbenika. U usporedbi s originalnim projektom, dva indeksa evaluacije smanjila su se za 18,3 % i 5,5 % nakon optimizacije, čime je značajno poboljšana rezna performansa rezne glave stroja za bušenje.Optimization design for roadheader cutting head is investigated in this paper. For this purpose, the rotation velocity, the swing velocity, the cutting angles of picks, and the inclination angles of picks are chosen as the variable for the optimization, and the mean value of resultant force and variation coefficient of cutting load are chosen as optimization objective. The effects of these parameters on evaluation indexes are studied by orthogonal experiment and finite element analysis. The change trend of the evaluation indexes with the experimental factors is also carried out. Compared with the original design, the two evaluation indexes decreased by 18,3 % and 5,5 % after optimization design separately, which improves the cutting performance of roadheader cutting head efficiently

    Detection Range of Airborne Magnetometers in Magnetic Anomaly Detection

    Get PDF
    Airborne magnetometers are utilized for the small-range search, precise positioning, and identification of the ferromagnetic properties of underwater targets. As an important performance parameter of sensors, the detection range of airborne magnetometers is commonly set as a fixed value in references regardless of the influences of environment noise, target magnetic properties, and platform features in a classical model to detect airborne magnetic anomalies. As a consequence, deviation in detection ability analysis is observed. In this study, a novel detection range model is proposed on the basis of classic detection range models of airborne magnetometers. In this model, probability distribution is applied, and the magnetic properties of targets and the environment noise properties of a moving submarine are considered. The detection range model is also constructed by considering the distribution of the moving submarine during detection. A cell-averaging greatest-of-constant false alarm rate test method is also used to calculate the detection range of the model at a desired false alarm rate. The detection range model is then used to establish typical submarine search probabilistic models. Results show that the model can be used to evaluate not only the effects of ambient magnetic noise but also the moving and geomagnetic features of the target and airborne detection platform. The model can also be utilized to display the actual operating range of sensor systems

    Alteration of Brain Structure With Long-Term Abstinence of Methamphetamine by Voxel-Based Morphometry

    Get PDF
    Background: A large portion of previous studies that have demonstrated brain gray matter reduction in individuals who use methamphetamine (MA) have focused on short-term abstinence, but few studies have focused on the effects of long-term abstinence of methamphetamine on brain structures.Materials and Methods: Our study includes 40 healthy controls and 44 abstinent methamphetamine-dependent (AMD) subjects who have abstained for at least 14 months. For every AMD subject, the age when they first used MA, the total time of MA use, the frequency of MA use in the last month before abstinence, the duration of abstinence and the craving score were recorded. Here we used magnetic resonance imaging (MRI) to measure the gray matter volume (GMV) of each subject with voxel-based morphometry method. Two-sample t-test (AlphaSim corrected) was performed to obtain brain regions with different gray matter volume (GMV) between groups. In addition, partial correlation coefficients adjusted for age, years of education, smoking, and drinking were calculated in the AMD group to assess associations between the mean GMV values in significant clusters and variables of MA use and abstinence.Results: Compared with the healthy control group, AMD group showed increased gray matter volumes in the bilateral cerebellum and decreased volumes in the right calcarine and right cuneus. Moreover, GMV of left cerebellum are positively correlated with the duration of abstinence in the AMD group (p = 0.040, r = 0.626).Conclusions: The present study showed that the gray matter volume in some brain regions is abnormal in the AMD subjects with long-term abstinence. Changes in gray matter volume of visual and cognitive function regions suggested that these areas play important roles in the progress of MA addiction and abstinence. In addition, positive correlation between GMV of the left cerebellum crus and duration of abstinence suggested that prolonged abstinence is beneficial to cognitive function recovery

    Hyperconnectivity of the lateral amygdala in long-term methamphetamine abstainers negatively correlated with withdrawal duration

    Get PDF
    Introduction: Several studies have reported structural and functional abnormalities of the amygdala caused by methamphetamine addiction. However, it is unknown whether abnormalities in amygdala function persist in long-term methamphetamine abstainers.Methods: In this study, 38 long-term male methamphetamine abstainers (>12 months) and 40 demographically matched male healthy controls (HCs) were recruited. Considering the heterogeneous nature of the amygdala structure and function, we chose 4 amygdala subregions (i.e., left lateral, left medial, right lateral, and right medial) as regions of interest (ROI) and compared the ROI-based resting-state functional connectivity (FC) at the whole-brain voxel-wise between the two groups. We explored the relationship between the detected abnormal connectivity, methamphetamine use factors, and the duration of withdrawal using correlation analyses. We also examined the effect of methamphetamine use factors, months of withdrawal, and sociodemographic data on detected abnormal connectivity through multiple linear regressions.Results: Compared with HCs, long-term methamphetamine abstainers showed significant hyperconnectivity between the left lateral amygdala and a continuous area extending to the left inferior/middle occipital gyrus and left middle/superior temporal gyrus. Abnormal connections negatively correlated with methamphetamine withdrawal time (r = −0.85, p < 0.001). The linear regression model further demonstrated that the months of withdrawal could identify the abnormal connectivity (βadj = −0.86, 95%CI: −1.06 to −0.65, p < 0.001).Discussion: The use of methamphetamine can impair the neural sensory system, including the visual and auditory systems, but this abnormal connectivity can gradually recover after prolonged withdrawal of methamphetamine. From a neuroimaging perspective, our results suggest that withdrawal is an effective treatment for methamphetamine

    Optimal controller design based on minimum principle

    No full text
    Optimal control theory is the foundation of the modern control theory, the minimum principle in optimal control theory has a very important position, using the minimum principle to design an adaptive controller, the controller integration advantages of the principle of minimum is not affected by the control system of linear or nonlinear constraints, and the end state and free time, is accused of quantity can be controlled and are free to wait for a characteristic, using the minimum controller application example and simulation, the results show that the minimum principle of the designed controller has the ideal control effect

    Multi source asynchronous information fusion technology based on cross prompts and its application

    No full text
    Several modern local high-tech wars have shown that the development of war is determined by the precise strike weapons at both ends of attack and defense. In this paper, the urgent requirement of defense ballistic missile target is taken as traction, and the heterogeneous multi-sensor cross-prompt technology is used as support to study the heterogeneous multi-sensor cross-prompt and its application in target detection. On the basis of fully studying the basic theory of heterogeneous multi-sensor cross-prompting, a cross-prompting network structure model based on typical anti-missile combat mission driving and a data fusion model based on asynchronous information are established, and a multi-sensor cross-prompting method based on fuzzy decision is designed. The model and method proposed in this paper are applied to target detection and tracking, and the model and method involved in this paper are verified by simulation

    Multi source asynchronous information fusion technology based on cross prompts and its application

    No full text
    Several modern local high-tech wars have shown that the development of war is determined by the precise strike weapons at both ends of attack and defense. In this paper, the urgent requirement of defense ballistic missile target is taken as traction, and the heterogeneous multi-sensor cross-prompt technology is used as support to study the heterogeneous multi-sensor cross-prompt and its application in target detection. On the basis of fully studying the basic theory of heterogeneous multi-sensor cross-prompting, a cross-prompting network structure model based on typical anti-missile combat mission driving and a data fusion model based on asynchronous information are established, and a multi-sensor cross-prompting method based on fuzzy decision is designed. The model and method proposed in this paper are applied to target detection and tracking, and the model and method involved in this paper are verified by simulation

    Space-Based Focal Plane Ambiguous Measurement Ballistic Target MeMber Tracking

    No full text
    Aimed at space-based passive detection and tracking of ballistic targets, a multi-target multi-Bernoulli (MeMber) filtering algorithm based on a focal plane ambiguous measurement model is proposed. The measurement error sources of space-based passive detection are analyzed. It is found that focal plane target tracking is the basis of space target tracking in the framework of the distributed data processing structure, and the main error of focal plane measurement is pixel resolution. Based on the above analysis, the focal plane ambiguous measurement model is established to replace the traditional measurement model and the generalized likelihood function is designed. Finally, the MeMber filter is modified based on ambiguous measurement and generalized likelihood function. The simulation experiment compares the tracking effect of a MeMber filter based on ambiguous measurement and traditional measurement, respectively. The filter based on ambiguous measurement achieves better results. It shows that ambiguous measurement is closer to reality and has more application value
    corecore